Dymeclin, the gene underlying Dyggve-Melchior-Clausen syndrome, encodes a protein integral to extracellular matrix and golgi organization and is associated with protein secretion pathways critical in bone development.

Article Details

Citation

Denais C, Dent CL, Southgate L, Hoyle J, Dafou D, Trembath RC, Machado RD

Dymeclin, the gene underlying Dyggve-Melchior-Clausen syndrome, encodes a protein integral to extracellular matrix and golgi organization and is associated with protein secretion pathways critical in bone development.

Hum Mutat. 2011 Feb;32(2):231-9. doi: 10.1002/humu.21413.

PubMed ID
21280149 [ View in PubMed
]
Abstract

Dyggve-Melchior-Clausen syndrome (DMC), a severe autosomal recessive skeletal disorder with mental retardation, is caused by mutation of the gene encoding Dymeclin (DYM). Employing patient fibroblasts with mutations characterized at the genomic and, for the first time, transcript level, we identified profound disruption of Golgi organization as a pathogenic feature, resolved by transfection of heterologous wild-type Dymeclin. Collagen targeting appeared defective in DMC cells leading to near complete absence of cell surface collagen fibers. DMC cells have an elevated apoptotic index (P< 0.01) likely due to a stress response contingent upon Golgi-related trafficking defects. We performed spatiotemporal mapping of Dymeclin expression in zebrafish embryos and identified high levels of transcript in brain and cartilage during early development. Finally, in a chondrocyte cDNA library, we identified two novel secretion pathway proteins as Dymeclin interacting partners: GOLM1 and PPIB. Together these data identify the role of Dymeclin in secretory pathways essential to endochondral bone formation during early development.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Peptidyl-prolyl cis-trans isomerase BP23284Details