Differential expression of alternatively spliced forms of MAP4: a repertoire of structurally different microtubule-binding domains.

Article Details

Citation

Chapin SJ, Lue CM, Yu MT, Bulinski JC

Differential expression of alternatively spliced forms of MAP4: a repertoire of structurally different microtubule-binding domains.

Biochemistry. 1995 Feb 21;34(7):2289-301.

PubMed ID
7857940 [ View in PubMed
]
Abstract

We previously reported that the microtubule (MT)-binding domain of microtubule-associated protein 4 (MAP4) contains three 18-amino acid imperfect repeats that are homologous to the repeats found in the MT-binding domains of the neuronal MAPs, MAP2 and tau [Chapin, S. J., & Bulinski, J. C. (1991) J. Cell Sci. 98, 27-36]. Here we report the isolation of clones encoding additional isoforms of MAP4, which differ in the number of repeated elements contained within their MT-binding domains. In addition to clones encoding three repeats, we isolated clones encoding a four-repeat isoform, whose MT-binding domain bears a striking similarity to the four-repeat isoform of tau. Other MAP4 clones that we isolated encode five repeats. The additional repeat in the five-repeat isoform of MAP4 is quite unusual in its amino acid sequence; this unusual repeat was also found by Aizawa et al. [Aizawa, H., et al. (1990) J. Biol. Chem. 265, 13849-13855] among the repeats encoded by bovine MAP4 clones possessing four repeats. In humans, MAP4 was recently shown to be encoded by a single-copy gene [West, R. R., et al. (1991) J. Biol. Chem. 266, 21886-21896]; we demonstrated that the human MAP4 gene is located on human chromosome 3p21. Expression of multiple MAP4 isoforms from this gene, which appears to result from alternative RNA splicing, was investigated by RNase protection analysis of mammalian cell lines and rat tissues. The five-repeat isoform was the only form detectable in most cell lines, and it was the most abundant isoform expressed in rat lung, liver, kidney, spleen, and testis. However, in rat brain, heart, and skeletal muscle, although the five-repeat isoform was expressed at all developmental stages examined, the tau-like four-repeat isoform was also expressed, and its expression increased during development. The three-repeat isoform was expressed in heart and, to a lesser extent, in brain, skeletal muscle, and lung. Our results demonstrate that several different MAP4 isoforms are expressed in the rat in different tissues and at various developmental stages. Furthermore, our data suggest that differential expression of MAP4 isoforms possessing distinct MT-binding domains may be involved in the changes in MT dynamics or function that are known to accompany differentiation.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Microtubule-associated protein 4P27816Details