Binding and internalization of 125I-alpha 2-macroglobulin by cultured fibroblasts.

Article Details

Citation

Dickson RB, Willingham MC, Pastan I

Binding and internalization of 125I-alpha 2-macroglobulin by cultured fibroblasts.

J Biol Chem. 1981 Apr 10;256(7):3454-9.

PubMed ID
6162847 [ View in PubMed
]
Abstract

The binding and internalization of 125I-labeled alpha 2-macroglobulin (125I-alpha 2M) was studied in cultured fibroblasts. Two classes of binding sites were detected on cell surfaces. One class corresponds to the previously described, high affinity and low capacity sites. The other class of binding sites may mediate uptake of high physiological blood levels of 125I-alpha 2M and has not been described previously. At 0 degrees C, this lower affinity class saturates at approximately 1,000 micrograms/ml and has a capacity of approximately 600,000 sites/cell. The lower affinity class accounts for the vast majority of cellular receptors for alpha 2M. An assay employing pepsin at pH 4 was developed to distinguish between surface-bound and internalized 125I-alpha 2M. Cellular uptake of 125I-alpha 2M at 37 degrees C has a component which saturates between 200 and 1,000 micrograms/ml and the rate of internalization of this component was approximately 1,700,000 molecules/cell/h. One mM Ca2+ was required for cell uptake of 125I-alpha 2M at 37 degrees C. Ca2+ was also required for binding at 0 degrees C to both low and high affinity classes of binding sites for 125I-alpha 2M. The transglutaminase inhibitors bacitracin, monodansylcadaverine, and N-benzyloxycarboxyl-5-diazo-4-oxonorvaline paranitrophenyl ester all inhibited cellular internalization of 125I-alpha 2M at 37 degrees C. Each of these three compounds selectively reduced 125I-alpha 2M binding to the high affinity, low capacity component at 0 degrees C. Based on the current binding studies and previous studies using electron microscopy which showed that bacitracin and other transglutaminase inhibitors block clustering of alpha 2M-receptor complexes in coated pits, we suggest that the inhibitors block the accumulation of occupied lower affinity alpha 2M receptors in coated pits where they acquire a higher apparent affinity.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
BacitracinAlpha-2-macroglobulinProteinHumans
Unknown
Inhibitor
Details