Magnitude of 5-HT1B and 5-HT1A receptor activation in guinea-pig and rat brain: evidence from sumatriptan dimer-mediated [35S]GTPgammaS binding responses.

Article Details

Citation

Dupuis DS, Perez M, Halazy S, Colpaert FC, Pauwels PJ

Magnitude of 5-HT1B and 5-HT1A receptor activation in guinea-pig and rat brain: evidence from sumatriptan dimer-mediated [35S]GTPgammaS binding responses.

Brain Res Mol Brain Res. 1999 Apr 6;67(1):107-23.

PubMed ID
10101238 [ View in PubMed
]
Abstract

The present study reports on G-protein activation by recombinant 5-HT receptors and by native 5-HT1A and 5-HT1B receptors in guinea-pig and rat brain using agonist-stimulated [35S]GTPgammaS binding responses mediated by a new 5-HT ligand, a dimer of sumatriptan. Dimerization of sumatriptan increased the binding affinity for h 5-HT1B (pKi: 9.22 vs. 7.79 for sumatriptan), h 5-HT1D (9.07 vs. 8.08) and also h 5-HT1A receptors (7.80 vs. 6.40), while the binding affinity for h 5-ht1E (6.67 vs. 6.19) and h 5-ht1F (7.37 vs. 7.78) receptors was not affected. Sumatriptan dimer (10 microM) stimulated [35S]GTPgammaS binding mainly in the superficial gray layer of the superior colliculi, hippocampus and substantia nigra of guinea-pig and rat coronal brain sections. This fits with the labelling by the 5-HT1B/1D receptor antagonist [3H] GR 125743. The observed [35S]GTPgammaS binding responses in the substantia nigra are likely to be mediated by stimulation of the 5-HT1B receptor subtype, since they were antagonized by the 5-HT1B inverse agonist SB 224289 (10 microM), and not by the 5-HT2A/1D antagonist ketanserin (10 microM). Quantitative assessment of the [35S]GTPgammaS binding responses in the substantia nigra of rat showed highly efficacious responses for both sumatriptan dimer and its monomer. In contrast, less efficacious agonist responses (51+/-10% and 35+/-13%, respectively) were measured in the guinea-pig substantia nigra. This may suggest that the G-protein coupling efficacy of 5-HT1B receptors is different between the substantia nigra of both species. In addition, the sumatriptan dimer also activated guinea-pig and rat hippocampal 5-HT1A receptors with high efficacy in contrast to sumatriptan. Therefore, dimerization of sumatriptan can be considered as a new approach to transform a partial 5-HT1A agonist into a more efficacious agonist. In conclusion, the sumatriptan dimer stimulates G-protein activation via 5-HT1B receptors besides 5-HT1A receptors in guinea-pig and rat brain. The magnitude of the 5-HT1B receptor responses is superior for sumatriptan and its dimer in rat compared to guinea-pig substantia nigra.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
Sumatriptan5-hydroxytryptamine receptor 1BProteinHumans
Yes
Agonist
Details