Kinetics and Mechanism of the Reaction between Serum Albumin and Auranofin (and Its Isopropyl Analogue) in Vitro.

Article Details

Citation

Roberts JR, Xiao J, Schliesman B, Parsons DJ, Shaw CF 3rd

Kinetics and Mechanism of the Reaction between Serum Albumin and Auranofin (and Its Isopropyl Analogue) in Vitro.

Inorg Chem. 1996 Jan 17;35(2):424-433.

PubMed ID
11666224 [ View in PubMed
]
Abstract

The first detailed kinetic analysis and mechanistic interpretation of the reactions between serum albumin and the second-generation gold drug Auranofin [Et(3)PAuSATg = (triethylphosphine)(2,3,4,6-tetra-O-acetyl-1-beta-D-glucopyranosato-S-) gold(I)] and its triisopropylphosphine analogue, iPr(3)PAuSATg, in vitro are reported. The reactions were investigated using Penefsky spun columns and NMR saturation transfer methods. Under the Penefsky chromatography conditions with 0.4-0.6 mM albumin and a wide range of Et(3)PAuSATg concentrations, the reaction is biphasic. The fast phase is apparently first order in albumin with a rate constant [k(1) = 3.4 +/- 0.3 x 10(-)(2) s(-)(1)] that decreases slightly in magnitude and becomes intermediate in order at low gold concentrations, [Et(3)PAuSATg] < [AlbSH]; it accounts for approximately 95% of the Au(I) that binds. A minor, slower step [k(2) = 2.3 +/- 0.3 x 10(-)(3) s(-)(1)), which accounts for only 5% of the reaction, is also first order with respect to albumin, and zero order with respect to auranofin. For iPr(3)PAuSATg, only the first step was observed, k(1) = (1.4 +/- 0.1) x 10(-)(2) s(-)(1), and is first order in albumin and independent of the iPr(3)PAuSATg concentration. (31)P-NMR saturation transfer experiments utilizing iPr(3)PAuSATg, under equilibrium conditions, yielded second-order rate constants for both the forward (1.2 x 10(2) M(-)(1) s(-)(1)) and the reverse (3.9 x 10(1) M(-)(1) s(-)(1)) directions. A multistep mechanism involving a conformationally altered albumin species was developed. Albumin domain IA opens with concomitant Cys-34 rearrangement, allowing facile gold binding and exchange, and then closes. In conjunction with the steady-state approximation, this mechanism accounts for the different reaction orders observed under the two set of conditions. The rate-determining conformational change of albumin governs the reaction as monitored by the Penefsky columns. Rapid second order exchange of R(3)PAuSATg at the exposed Cys-34 residue is observed under the NMR conditions. The mechanism predicts that under physiological conditions where [Et(3)PAuSATg] is 10-25 &mgr;M, the reaction will be second order and rapid with a rate constant of 8 +/- 2 x 10(2) M(-)(1) s(-)(1). The Penefsky spun columns revealed a previously unreported and novel binding mechanism, association of auranofin in the pocket of albumin-disulfide species, which was confirmed by Hummel-Dreyer gel chromatographic techniques under equilibrium conditions. This albumin-auranofin complex (AlbSSR-Et(3)PAuSATg) is weakly bound and readily dissociates during conventional gel exclusion chromatography.

DrugBank Data that Cites this Article

Drug Carriers
DrugCarrierKindOrganismPharmacological ActionActions
AuranofinSerum albuminProteinHumans
Unknown
Not AvailableDetails