Expression and characterization of human pancreatic preprocarboxypeptidase A1 and preprocarboxypeptidase A2.

Article Details

Citation

Laethem RM, Blumenkopf TA, Cory M, Elwell L, Moxham CP, Ray PH, Walton LM, Smith GK

Expression and characterization of human pancreatic preprocarboxypeptidase A1 and preprocarboxypeptidase A2.

Arch Biochem Biophys. 1996 Aug 1;332(1):8-18.

PubMed ID
8806703 [ View in PubMed
]
Abstract

We are investigating the potential utility of human carboxypeptidases A in antibody-directed enzyme prodrug therapy (ADEPT). Hybridization screening of a human pancreatic cDNA library with cDNA probes that encoded either rat carboxypeptidase A1 (rCPA1) or carboxypeptidase A2 (rCPA2) was used to clone the human prepro-CPA homologs. After expression of the respective pro-hCPA cDNA in Saccharomyces cerevisiae, the enzymes were purified to homogeneity by a combination of hydrophobic and ion-exchange chromatography. Purified hCPA1 and hCPA2 migrate as a single protein band with M(r) 34,000 when subjected to gel electrophoresis in the presence of sodium dodecyl sulfate under reducing conditions. Kinetic studies of the purified enzymes with hippuryl-L-phenylalanine resulted in kcat/Km values of 57,000 and 19,000 M-1 s-1 for hCPA1 and hCPA2, respectively. Using the ester substrate, hippuryl-D, L-phenyllactate, we found unique esterase/ peptidase specific activity ratios among hCPA1, hCPA2, rCPA1, and bovine CPA (bCPA) ranging from 13 to 325. Two potential ADEPT substrates, methotrexate-alpha-phenylalanine (MTX-Phe) and methotrexate-alpha-(1-naphthyl)alanine (MTX-naphthylAla) were also analyzed. The kcat/Km values for MTX-Phe were 440,000 and 90,000 M-1 s-1 for hCPA1 and hCPA2, respectively, and for MTX-naphthylAla these values were 1400 and 1,400,000 M-1 s-1 for hCPA1 and hCPA2, respectively. The kinetic data show that hCPA2 has a larger substrate binding site than the hCPA1 enzyme. Differences between hCPA1 and hCPA2 were also observed in thermal stability experiments at 60 degrees C where the half-life for thermal denaturation of hCPA2 is eightfold longer than that for hCPA1. These experiments indicate that hCPA1 and hCPA2 are potential candidates for use in a human-based ADEPT approach.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Carboxypeptidase A1P15085Details