Protection of arsenic-induced hepatic disorder by arjunolic acid.

Article Details

Citation

Manna P, Sinha M, Sil PC

Protection of arsenic-induced hepatic disorder by arjunolic acid.

Basic Clin Pharmacol Toxicol. 2007 Nov;101(5):333-8.

PubMed ID
17910617 [ View in PubMed
]
Abstract

Arsenic is one of the ubiquitous environmental pollutants, which affects nearly all organ systems. The present study has been carried out to investigate the hepatoprotective role of arjunolic acid, a triterpenoid saponin, against arsenic-induced oxidative damages in murine livers. Administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly reduced the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase and glutathione peroxidase as well as depleted the level of reduced glutathione and total thiols. In addition, sodium arsenite also increased the activities of serum marker enzymes, alanine transaminase and alkaline phosphatase, enhanced DNA fragmentation, protein carbonyl content, lipid peroxidation end-products and the level of oxidized glutathione. Studies with arjunolic acid show that in vitro it possesses free radical-scavenging and in vivo antioxidant activities. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration prevents the alterations of the activities of all antioxidant indices and levels of the other parameters studied. Histological studies revealed less centrilobular necrosis in the liver treated with arjunolic acid prior to arsenic intoxication compared to the liver treated with the toxin alone. Effects of a known antioxidant, vitamin C, have been included in the study as a positive control. In conclusion, the results suggest that arjunolic acid possesses the ability to attenuate arsenic-induced oxidative stress in murine liver probably via its antioxidant activity.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
Ascorbic acidDNANucleotideHumans
Unknown
Cleavage
Details