An SH2 domain-dependent, phosphotyrosine-independent interaction between Vav1 and the Mer receptor tyrosine kinase: a mechanism for localizing guanine nucleotide-exchange factor action.

Article Details

Citation

Mahajan NP, Earp HS

An SH2 domain-dependent, phosphotyrosine-independent interaction between Vav1 and the Mer receptor tyrosine kinase: a mechanism for localizing guanine nucleotide-exchange factor action.

J Biol Chem. 2003 Oct 24;278(43):42596-603. Epub 2003 Aug 14.

PubMed ID
12920122 [ View in PubMed
]
Abstract

Mer belongs to the Mer/Axl/Tyro3 receptor tyrosine kinase family, which regulates immune homeostasis in part by triggering monocyte ingestion of apoptotic cells. Mutations in Mer can also cause retinitis pigmentosa, again due to defective phagocytosis of apoptotic material. Although, some functional aspects of Mer have been deciphered, how receptor activation lead to the physiological consequences is not understood. By using yeast two-hybrid assays, we identified the carboxyl-terminal region of the guanine nucleotide-exchange factor (GEF) Vav1 as a Mer-binding partner. Unlike similar (related) receptors, Mer interacted with Vav1 constitutively and independently of phosphotyrosine, yet the site of binding localized to the Vav1 SH2 domain. Mer activation resulted in tyrosine phosphorylation of Vav1 and release from Mer, whereas Vav1 was neither phosphorylated nor released from kinase-dead Mer. Mutation of the Vav1 SH2 domain phosphotyrosine coordinating Arg-696 did not alter Mer/Vav1 constitutive binding or Vav1 tyrosine phosphorylation but did retard Vav1 release from autophosphorylated Mer. Ligand-dependent activation of Mer in human monocytes led to Vav1 release and stimulated GDP replacement by GTP on RhoA family members. This unusual constitutive, SH2 domain-dependent, but phosphotyrosine-independent, interaction and its regulated local release and subsequent activation of Rac1, Cdc42, and RhoA may explain how Mer coordinates precise cytoskeletal changes governing the ingestion of apoptotic material by macrophages and pigmented retinal epithelial cells.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Tyrosine-protein kinase MerQ12866Details