A novel strategy for enzymatic synthesis of 4-hydroxyisoleucine: identification of an enzyme possessing HMKP (4-hydroxy-3-methyl-2-keto-pentanoate) aldolase activity.

Article Details

Citation

Smirnov SV, Samsonova NN, Novikova AE, Matrosov NG, Rushkevich NY, Kodera T, Ogawa J, Yamanaka H, Shimizu S

A novel strategy for enzymatic synthesis of 4-hydroxyisoleucine: identification of an enzyme possessing HMKP (4-hydroxy-3-methyl-2-keto-pentanoate) aldolase activity.

FEMS Microbiol Lett. 2007 Aug;273(1):70-7. Epub 2007 Jun 6.

PubMed ID
17559390 [ View in PubMed
]
Abstract

A two-step enzymatic synthesis process of 4-hydroxyisoleucine is suggested. In the first step, the aldol condensation of acetaldehyde and alpha-ketobutyrate catalyzed by specific aldolase results in the formation of 4-hydroxy-3-methyl-2-keto-pentanoate (HMKP). In the second step, amination of HMKP by the branched-chain amino acid aminotransferase leads to synthesis of 4-hydroxyisoleucine. An enzyme possessing HMKP aldolase activity (asHPAL) was purified 2500-fold from a crude extract of Arthrobacter simplex strain AKU 626. Sequencing of the asHPAL structural gene showed that the purified enzyme belongs to the HpcH/HpaI aldolase family. The 4-hydroxyisoleucine was synthesized in vitro from acetaldehyde, alpha-ketobutyrate and l-glutamate using a coupled aldolase/branched-chain amino acid aminotransferase bienzymatic reaction.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
Glutamic acidBranched-chain-amino-acid aminotransferase, cytosolicProteinHumans
Unknown
Not AvailableDetails