Gamma-actin: unusual mRNA 3'-untranslated sequence conservation and amino acid substitutions that may be cancer related.

Article Details

Citation

Chou CC, Davis RC, Fuller ML, Slovin JP, Wong A, Wright J, Kania S, Shaked R, Gatti RA, Salser WA

Gamma-actin: unusual mRNA 3'-untranslated sequence conservation and amino acid substitutions that may be cancer related.

Proc Natl Acad Sci U S A. 1987 May;84(9):2575-9.

PubMed ID
3472224 [ View in PubMed
]
Abstract

beta-Actin mutations in chemically transformed human cell lines have been associated with tumorigenicity, an association consistent with other evidence suggesting that altered cytoskeletal proteins may have an important role in cancer initiation or progression. From a human promyelocytic leukemia cell line, we have isolated a gamma-actin cDNA clone with amino acid substitutions in a region highly conserved in the many actins analyzed. To our knowledge, this is the first example of a variant gamma-actin in a human neoplasm. A separate finding from the analysis of this clone is that the gamma-actin 3'-untranslated region is among the most highly conserved of all 3'-untranslated sequences so far reported, but is entirely different from the beta-actin 3'-untranslated region. The high degree of evolutionary conservation suggests that the 3'-untranslated regions of these two mRNAs have important and distinct functional roles that were already fully differentiated more than 100 million years ago. Mutations affecting four major cytoskeletal components have now been identified in human neoplastic cells. These findings suggest that mutated cytoskeletal genes may be members of a class of oncogenes, fundamentally different from both the nuclear-acting (e.g., myc and simian virus 40 large tumor antigen) and growth factor/receptor/protein kinase-related (e.g., sis, erbB, and ras) types of oncogenes.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Actin, cytoplasmic 2P63261Details