CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes.

Article Details

Citation

Ramirez J, Innocenti F, Schuetz EG, Flockhart DA, Relling MV, Santucci R, Ratain MJ

CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes.

Drug Metab Dispos. 2004 Sep;32(9):930-6.

PubMed ID
15319333 [ View in PubMed
]
Abstract

Meperidine is an opioid analgesic metabolized in the liver by N-demethylation to normeperidine, a potent stimulant of the central nervous system. The purpose of this study was to identify the human cytochrome P450 (P450) enzymes involved in normeperidine formation. Our in vitro studies included 1) screening 16 expressed P450s for normeperidine formation, 2) kinetic experiments on human liver microsomes and candidate P450s, and 3) correlation and inhibition experiments using human hepatic microsomes. After normalization by its relative abundance in human liver microsomes, CYP2B6, CYP3A4, and CYP2C19 accounted for 57, 28, and 15% of the total intrinsic clearance of meperidine. CYP3A5 and CYP2D6 contributed to < 1%. Formation of normeperidine significantly correlated with CYP2B6-selective S-mephenytoin N-demethylation (r = 0.88, p < 0.0001 at 75 > microM meperidine, and r = 0.89, p < 0.0001 at 350 microM meperidine, n = 21) and CYP3A4-selective midazolam 1'-hydroxylation (r = 0.59, p < 0.01 at 75 microM meperidine, and r = 0.55, p < 0.01 at 350 microM meperidine, n = 23). No significant correlation was observed with CYP2C19-selective S-mephenytoin 4'-hydroxylation (r = 0.36, p = 0.2 at 75 microM meperidine, and r = 0.02, p = 0.9 at 350 microM meperidine, n = 13). An anti-CYP2B6 antibody inhibited normeperidine formation by 46%. In contrast, antibodies inhibitory to CYP3A4 and CYP2C8/9/18/19 had little effect (<14% inhibition). Experiments with thiotepa and ketoconazole suggested inhibition of microsomal CYP2B6 and CYP3A4 activity, whereas studies with fluvoxamine (a substrate of CYP2C19) were inconclusive due to lack of specificity. We conclude that normeperidine formation in human liver microsomes is mainly catalyzed by CYP2B6 and CYP3A4, with a minor contribution from CYP2C19.

DrugBank Data that Cites this Article

Drug Enzymes
DrugEnzymeKindOrganismPharmacological ActionActions
BarbitalCytochrome P450 2C19ProteinHumans
No
Substrate
Inducer
Details
MeperidineCytochrome P450 2B6ProteinHumans
No
Substrate
Details
MeperidineCytochrome P450 2C19ProteinHumans
Unknown
Substrate
Details
MeperidineCytochrome P450 2D6ProteinHumans
Unknown
Substrate
Details
Drug Interactions
DrugsInteraction
Meperidine
Phenytoin
The serum concentration of Meperidine can be decreased when it is combined with Phenytoin.
Meperidine
Fosphenytoin
The serum concentration of Meperidine can be decreased when it is combined with Fosphenytoin.