Uptake and efflux of quinacrine, a candidate for the treatment of prion diseases, at the blood-brain barrier.

Article Details

Citation

Dohgu S, Yamauchi A, Takata F, Sawada Y, Higuchi S, Naito M, Tsuruo T, Shirabe S, Niwa M, Katamine S, Kataoka Y

Uptake and efflux of quinacrine, a candidate for the treatment of prion diseases, at the blood-brain barrier.

Cell Mol Neurobiol. 2004 Apr;24(2):205-17.

PubMed ID
15176436 [ View in PubMed
]
Abstract

1. A clinical trial of quinacrine in patients with Creutzfeldt-Jakob disease is now in progress. The permeability of drugs through the blood-brain barrier (BBB) is a determinant of their therapeutic efficacy for prion diseases. The mechanism of quinacrine transport across the BBB was investigated using mouse brain endothelial cells (MBEC4). 2. The permeability of quinacrine through MBEC4 cells was lower than that of sodium fluorescein, a BBB-impermeable marker. The basolateral-to-apical transport of quinacrine was greater than its apical-to-basolateral transport. In the presence of P-glycoprotein (P-gp) inhibitor, cyclosporine or verapamil, the apical-to-basolateral transport of quinacrine increased. The uptake of quinacrine by MBEC4 cells was enhanced in the presence of cyclosporine or verapamil. 3. Quinacrine uptake was highly concentrative, this event being carried out by a saturable and carrier-mediated system with an apparent Km of 52.1 microM. Quinacrine uptake was insensitive to Na+-depletion and changes in the membrane potential and sensitive to changes in pH. This uptake was decreased by tetraethylammonium and cimetidine, a substrate and an inhibitor of organic cation transporters, respectively. 4. These findings suggest that quinacrine transport at the BBB is mediated by the efflux system (P-gp) and the influx system (organic cation transporter-like machinery).

DrugBank Data that Cites this Article

Drug Transporters
DrugTransporterKindOrganismPharmacological ActionActions
QuinacrineSolute carrier family 22 member 2ProteinHumans
Unknown
Inhibitor
Details