Autosomal recessive chronic granulomatous disease caused by defects in NCF-1, the gene encoding the phagocyte p47-phox: mutations not arising in the NCF-1 pseudogenes.

Article Details

Citation

Noack D, Rae J, Cross AR, Ellis BA, Newburger PE, Curnutte JT, Heyworth PG

Autosomal recessive chronic granulomatous disease caused by defects in NCF-1, the gene encoding the phagocyte p47-phox: mutations not arising in the NCF-1 pseudogenes.

Blood. 2001 Jan 1;97(1):305-11.

PubMed ID
11133775 [ View in PubMed
]
Abstract

Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by defects in any one of 4 genes encoding phagocyte NADPH oxidase subunits. Unlike other CGD subtypes, in which there is great heterogeneity among mutations, 97% of affected alleles in patients previously reported with A47(0) CGD carry a single mutation, a GT deletion (DeltaGT) in exon 2 of the p47-phox gene, NCF-1. This unusually high incidence results from recombination events between NCF-1 and its highly homologous pseudogenes, in which DeltaGT originates. In 50 consecutive patients with A47(0) CGD, 4 were identified who were heterozygous for DeltaGT in NCF-1, and for the first time, 2 were identified whose DNA appeared normal at this position. To avoid co-amplification of pseudogene sequence and to enable the identification of mutations in these patients, allele-specific polymerase chain reaction was used to amplify alleles not containing DeltaGT. In each of the 4 patients who were heterozygous for DeltaGT, an additional novel mutation was identified. These were 2 missense mutations, G125 --> A in exon 2 (predicting Arg42 --> Gln) and G784 --> A in exon 8 (Gly262 --> Ser), and 2 splice junction mutations at the 5' end of intron 1, gt --> at and gtg --> gtt. The first of 2 patients who appeared normal at the GT position was a compound heterozygote with the G125 --> A transition on one allele and a deletion of G811 on the other. In the second of these patients, only a single defect was detected, G574 --> A, which predicts Gly192 --> Ser but is likely to result in defective splicing because it represents the final nucleotide of exon 6.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Neutrophil cytosol factor 1P14598Details