Characterization of the substrate mimic bound to engineered prostacyclin synthase in solution using high-resolution NMR spectroscopy and mutagenesis: implication of the molecular mechanism in biosynthesis of prostacyclin.

Article Details

Citation

Ruan KH, Wu J, Cervantes V

Characterization of the substrate mimic bound to engineered prostacyclin synthase in solution using high-resolution NMR spectroscopy and mutagenesis: implication of the molecular mechanism in biosynthesis of prostacyclin.

Biochemistry. 2008 Jan 15;47(2):680-8. Epub 2007 Dec 15.

PubMed ID
18081314 [ View in PubMed
]
Abstract

High-resolution NMR spectroscopy was used to determine the docking of a substrate (prostaglandin H2) mimic (U46619) to the engineered prostacyclin (PGI2) synthase (PGIS) in solution. The binding of U46619 to the PGIS protein was demonstrated by 1D NMR titration, and the significant perturbation of the chemical shifts of protons at C-11, H2C, and H20 of U46619 were observed upon U46619 binding to the engineered PGIS in a concentration-dependent manner. The detailed conformational change and 3D structure of the PGIS-bound U46619 were further demonstrated by 2D 1H NMR experiments using the transferred NOE technique. The distances between the protons H20 and H2, H18 and H2, and H18 and H4 are shorter following their binding to the PGIS in solution-down to within 5 A. These shorter distances resulted in a widely open conformation, where the triangle shape of the unbound U46619 changed to a more compact conformation with an oval shape. The bound conformation of U46619 fits the crystal structure of the PGIS substrate binding pocket considerably better than that of the unbound U46619. The residues important to the substrate binding in the active site pocket of PGIS were also predicted. For example, Trp282 could be one of the most important residues and is suspected to play a role in the determination of specific catalytic function, which has been established by the docking studies using the NMR structure of the PGIS-bound form of U46619 and the PGIS crystal structure. These studies have provided the structural information for the interaction of the PGIS with its substrate mimic. The noted conformational changes where the C-6 position is closer to the C-9 position of U46619 provided the first experimental data for understanding the molecular mechanism of the catalytic function of PGIS in the isomerization of PGH2 to prostacyclin.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
EpoprostenolProstacyclin synthaseProteinHumans
Yes
Inducer
Details