Antagonism of adenosine receptors by caffeine and caffeine metabolites in equine forebrain tissues.

Article Details

Citation

Chou CC, Vickroy TW

Antagonism of adenosine receptors by caffeine and caffeine metabolites in equine forebrain tissues.

Am J Vet Res. 2003 Feb;64(2):216-24.

PubMed ID
12602592 [ View in PubMed
]
Abstract

OBJECTIVE: To determine the presence of adenosine receptor subtypes A1 and A2a in equine forebrain tissues and to characterize the interactions of caffeine and its metabolites with adenosine receptors in the CNS of horses. SAMPLE POPULATION: Brain tissue specimens obtained during necropsy from 5 adult male research horses. PROCEDURE: Membrane-enriched homogenates from cerebral cortex and striatum were evaluated by radioligand binding assays with the A1-selective ligand [3H]DPCPX and the A2a-selective ligand [3H]ZM241385. Functional responses to adenosine receptor agonists and antagonists were determined by a nucleotide exchange assay using [35S]-guanosine 5'-(gamma-thio) triphosphate ([35S]GTPgammaS). RESULTS: Saturable high affinity [3H]DPCPX binding (A1) sites were detected in cerebral cortex and striatum, whereas high-affinity [3H]ZM241385 binding (A2a) sites were detected only in striatum. Caffeine and related methylxanthines had similar binding affinities at A1 and A2a sites with rank orders of drug binding affinities (theophylline > paraxanthine > or = caffeine >> theobromine) similar to other species. [35S]GTPgammaS exchange revealed that caffeine and its metabolites act as pure adenosine receptor antagonists at concentrations that correspond to A1 and A2a receptor binding affinities. CONCLUSIONS AND CLINICAL RELEVANCE: Results of our study affirm the presence of guanine nucleotide binding protein linked adenosine receptors (ie, high-affinity A1 and A2a adenosine receptors) in equine forebrain tissues and reveal the antagonistic actions by caffeine and several biologically active caffeine metabolites. Antagonism of adenosine actions in the equine CNS by these stimulants may be responsible for some central actions of methylxanthine drugs, including motor stimulation and enhanced racing performance.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
TheobromineAdenosine receptor A1ProteinHumans
Yes
Antagonist
Details
TheobromineAdenosine receptor A2aProteinHumans
Yes
Antagonist
Details