The past, present, and future of basal insulins.

Article Details


Pettus J, Santos Cavaiola T, Tamborlane WV, Edelman S

The past, present, and future of basal insulins.

Diabetes Metab Res Rev. 2016 Sep;32(6):478-96. doi: 10.1002/dmrr.2763. Epub 2015 Nov 25.

PubMed ID
26509843 [ View in PubMed

Insulin production by the pancreas follows a basic pattern where basal levels of insulin are secreted during fasting periods, with prandial increases in insulin associated with food ingestion. The aim of insulin therapy in patients with diabetes is to match the endogenous pattern of insulin secretion as closely as possible without causing hypoglycaemia. There are several optimal pharmacokinetic and pharmacodynamic properties of long-acting basal insulins that can help to achieve this aim, namely, as follows: activity that is flat and as free of peaks as possible, a duration of action of >/=24-h, and as little day-to-day variation as possible. The long-acting basal insulins are a fundamental therapy for patients with type 1 and type 2 diabetes, and those that are currently available have many benefits; however, the development of even longer-acting insulins and improved insulin delivery techniques may lead to better glycemic control for patients in the future. Established long-acting basal insulins available in the United States and Europe include insulin glargine 100 units/mL and insulin detemir, both of which exhibit similar glycemic control to that of the intermediate-acting neutral protamine Hagedorn insulin, but with a reduction in hypoglycaemia. Newer insulin products available include new insulin glargine 300 units/mL (United States and Europe) and the ultra-long-acting insulin degludec (Europe) with basal insulin peglispro currently in development. These new insulins demonstrate different pharmacokinetic/pharmacodynamic profiles and longer durations of action (>24 h) compared with insulin glargine 100 units/mL, which may lead to potential benefits. The introduction of biosimilar insulins may also broaden access to insulins by reducing treatment costs. Copyright (c) 2015 John Wiley & Sons, Ltd.

DrugBank Data that Cites this Article