Inhibition of rat lung mixed-function oxidase activity following repeated low-level toluene inhalation: possible role of toluene metabolites.

Article Details

Citation

Furman GM, Silverman DM, Schatz RA

Inhibition of rat lung mixed-function oxidase activity following repeated low-level toluene inhalation: possible role of toluene metabolites.

J Toxicol Environ Health A. 1998 Aug 21;54(8):633-45.

PubMed ID
9726784 [ View in PubMed
]
Abstract

Toluene is a commonly used solvent that has been shown to alter mixed-function oxidase (MFO) activity, in an organ- and isozyme-specific pattern, following intraperitoneal administration. The purpose of this study was to determine whether similar changes occurred following repeated, low-level inhalation exposure, and to investigate the role of toluene metabolites in these alterations. Exposure to 375 ppm toluene, 6 h/d for up to 5 d, resulted in significant inhibition of the activity of pulmonary arylhydrocarbon hydroxylase (AHH), cytochrome P-4502B1 (CYP2B1), and CYP4B1, but not CYP1A1. After exposure to lower toluene levels (125 ppm, 6 h/d, 3 d), the activities of lung AHH, CYP2B1, and CYP4B1 were also significantly decreased, but in a dose-related manner. MFO activity was not consistently altered in liver. Control pulmonary or liver microsomes were incubated with various concentrations (0.01-10 mM) of toluene or its metabolites and CYP2B1, CYP1A1, and/or CYP4B1 activities were subsequently determined. Benzaldehyde produced a significant dose-related inhibition in the activity of all three lung P-450s examined (IC50 10(-3) M). Toluene was found to be a more potent inhibitor of lung CYP2B1 and CYP1A1 (IC50, 10(-4) M) than benzaldehyde, but neither toluene nor benzyl alcohol was an effective inhibitor of lung CYP4B1. Toluene and its metabolites were weaker inhibitors of CYP1A1 than of CYP2B1. For CYP2B1 and CYP1A1, the order of inhibitory potency was toluene > benzaldehyde > benzyl alcohol and suggests that both the parent molecule and its metabolites may act in concert to inhibit catalytic activity of these cytochromes. The MFO inhibition seen after repeated low-level toluene inhalation exposure could result in altered metabolic profiles of other xenobiotics in an organ-specific fashion.

DrugBank Data that Cites this Article

Drug Enzymes
DrugEnzymeKindOrganismPharmacological ActionActions
Benzyl alcoholCytochrome P450 1A1ProteinHumans
Unknown
Inhibitor
Details