Hormonal regulation of the human sterol 27-hydroxylase gene CYP27A1.

Article Details

Citation

Araya Z, Tang W, Wikvall K

Hormonal regulation of the human sterol 27-hydroxylase gene CYP27A1.

Biochem J. 2003 Jun 1;372(Pt 2):529-34.

PubMed ID
12597773 [ View in PubMed
]
Abstract

The nucleotide sequence data reported in this paper will appear in EMBL Nucleotide Sequence Database under the accession number AJ 544720. The mitochondrial sterol 27-hydroxylase (CYP27A1) is a multifunctional cytochrome P450 enzyme that catalyses important hydroxylations in the biosynthesis of bile acids and bioactivation of vitamin D(3). Previous results [Babiker, Andersson, Lund, Xiu, Deeb, Reshef, Leitersdorf, Diczfalusy and Bj orkhem (1997) J. Biol. Chem. 272, 26253-26261] suggest that CYP27A1 plays an important role in cholesterol homoeostasis and affects atherogenesis. In the present study, the regulation of the human CYP27A1 gene by growth hormone (GH), insulin-like growth factor-1 (IGF-1), dexamethasone, thyroid hormones and PMA was studied. HepG2 cells were transfected transiently with luciferase reporter gene constructs containing DNA fragments flanking the 5'-region of the human CYP27A1 gene. GH, IGF-1 and dexamethasone increased the promoter activity by 2-3-fold, whereas thyroxine (T(4)) and PMA repressed the activity significantly when measured with luciferase activity expressed in the cells. The endogenous CYP27A1 enzyme activity in the cells was stimulated by GH, IGF-1 and dexamethasone, whereas T(4) and PMA inhibited the activity. Experiments with progressive deletion/luciferase reporter gene constructs indicated that the response elements for GH may be localized in a region upstream to position -1094 bp. The putative response elements for dexamethasone were mapped to positions between -792 and -1095 bp. The -451 bp fragment of the human CYP27A1 gene was found to confer the activation by IGF-1, and the inhibition by T(4) and PMA. Results of the present study suggest that CYP27A1 is regulated in human cells by hormones and signal-transduction pathways.

DrugBank Data that Cites this Article

Drug Enzymes
DrugEnzymeKindOrganismPharmacological ActionActions
PegvisomantSterol 26-hydroxylase, mitochondrialProteinHumans
Unknown
Inducer
Details