Isotretinoin and FoxO1: A scientific hypothesis.

Article Details

Citation

Melnik BC

Isotretinoin and FoxO1: A scientific hypothesis.

Dermatoendocrinol. 2011 Jul;3(3):141-65. doi: 10.4161/derm.3.3.15331. Epub 2011 Jul 1.

PubMed ID
22110774 [ View in PubMed
]
Abstract

Oral isotretinoin (13-cis retinoic acid) is the most effective drug in the treatment of acne and restores all major pathogenetic factors of acne vulgaris. isotretinoin is regarded as a prodrug which after isomerizisation to all-trans-retinoic acid (ATRA) induces apoptosis in cells cultured from human sebaceous glands, meibomian glands, neuroblastoma cells, hypothalamic cells, hippocampus cells, Dalton's lymphoma ascites cells, B16F-10 melanoma cells, and neuronal crest cells and others. By means of translational research this paper provides substantial indirect evidence for isotretinoin's mode of action by upregulation of forkhead box class O (FoxO) transcription factors. FoxOs play a pivotal role in the regulation of androgen receptor transactivation, insulin/insulin like growth factor-1 (IGF-1)-signaling, peroxisome proliferator-activated receptor-gamma (PPArgamma)- and liver X receptor-alpha (LXralpha)-mediated lipogenesis, beta-catenin signaling, cell proliferation, apoptosis, reactive oxygene homeostasis, innate and acquired immunity, stem cell homeostasis, as well as anti-cancer effects. An accumulating body of evidence suggests that the therapeutic, adverse, teratogenic and chemopreventive effecs of isotretinoin are all mediated by upregulation of FoxO-mediated gene transcription. These FoxO-driven transcriptional changes of the second response of retinoic acid receptor (RAR)-mediated signaling counterbalance gene expression of acne due to increased growth factor signaling with downregulated nuclear FoxO proteins. The proposed isotretinoin-->ATRA-->RAR-->FoxO interaction offers intriguing new insights into the mode of isotretinoin action and explains most therapeutic, adverse and teratogenic effects of isotretinoin in the treatment of acne by a common mode of FoxO-mediated transcriptional regulation.

DrugBank Data that Cites this Article

Drugs