beta-blocker binding to human 5-HT(1A) receptors in vivo and in vitro: implications for antidepressant therapy.

Article Details

Citation

Rabiner EA, Gunn RN, Castro ME, Sargent PA, Cowen PJ, Koepp MJ, Meyer JH, Bench CJ, Harrison PJ, Pazos A, Sharp T, Grasby PM

beta-blocker binding to human 5-HT(1A) receptors in vivo and in vitro: implications for antidepressant therapy.

Neuropsychopharmacology. 2000 Sep;23(3):285-93.

PubMed ID
10942852 [ View in PubMed
]
Abstract

A novel strategy for improving the treatment of depressive illness is augmentation of antidepressants with a 5-HT1(1A) autoreceptor antagonist. However, trials using the 5-HT1(1A)/beta-blocker pindolol are proving inconsistent. We report how positron emission tomography (PET) and in vitro autoradiography can inform trials of antidepressant augmentation. We show that in healthy volunteers, in vivo, pindolol (n = 10) and penbutolol (n = 4), but not tertatolol (n = 4) occupy the human 5-HT(1A) receptors, at clinical doses. Pindolol, as well as the beta-blockers penbutolol and tertatolol, has high affinity for human 5-HT(1A) receptors in post-mortem brain slices (n = 4). Pindolol shows preference for 5-HT(1A) autoreceptors versus the post-synaptic receptors both in vitro and in vivo. Our data reveal that pindolol doses used in antidepressant trials so far are suboptimal for significant occupancy at the 5-HT(1A) autoreceptor. Penbutolol or higher doses of pindolol are candidates for testing as antidepressant augmenting regimes in future clinical trials.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
Penbutolol5-hydroxytryptamine receptor 1AProteinHumans
Yes
Antagonist
Details