Involvement of human CYP1A isoenzymes in the metabolism and drug interactions of riluzole in vitro.

Article Details

Citation

Sanderink GJ, Bournique B, Stevens J, Petry M, Martinet M

Involvement of human CYP1A isoenzymes in the metabolism and drug interactions of riluzole in vitro.

J Pharmacol Exp Ther. 1997 Sep;282(3):1465-72.

PubMed ID
9316860 [ View in PubMed
]
Abstract

Cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) isoenzymes involved in riluzole oxidation and glucuronidation were characterized in (1) kinetic studies with human hepatic microsomes and isoenzyme-selective probes and (2) metabolic studies with genetically expressed human CYP isoenzymes from transfected B-lymphoblastoid and yeast cells. In vitro incubation of [14C]riluzole (15 microM) with human hepatic microsomes and NADPH or UDPGA cofactors resulted in formation of N-hydroxyriluzole (K(m) = 30 microM) or an unidentified glucuroconjugate (K(m) = 118 microM). Human microsomal riluzole N-hydroxylation was most strongly inhibited by the CYP1A2 inhibitor alpha-naphthoflavone (IC50 = 0.42 microM). Human CYP1A2-expressing yeast microsomes generated N-hydroxyriluzole, whereas human CYP1A1-expressing yeast microsomes generated N-hydroxyriluzole, two additional hydroxylated derivatives and an O-dealkylated derivative. CYP1A2 was the only genetically expressed human P450 isoenzyme in B-lymphoblastoid microsomes to metabolize riluzole. Riluzole glucuronidation was inhibited most potently by propofol, a substrate for the human hepatic UGT HP4 (UGT1.8/9) isoenzyme. In vitro, human hepatic microsomal hydroxylation of riluzole (15 microM) was weakly inhibited by amitriptyline, diclofenac, diazepam, nicergoline, clomipramine, imipramine, quinine and enoxacin (IC50 approximately 200-500 microM) and cimetidine (IC50 = 940 microM). Riluzole (1 and 10 microM) produced a weak, concentration-dependent inhibition of CYP1A2 activity and showed competitive inhibition of methoxyresorufin O-demethylase. Thus, riluzole is predominantly metabolized by CYP1A2 in human hepatic microsomes to N-hydroxyriluzole; extrahepatic CYP1A1 can also be responsible for the formation of several other metabolites. Direct glucuronidation is a relatively minor metabolic route. In vivo, riluzole is unlikely to exhibit significant pharmacokinetic drug interaction with coadministered drugs that undergo phase I metabolism.

DrugBank Data that Cites this Article

Drug Enzymes
DrugEnzymeKindOrganismPharmacological ActionActions
RiluzoleCytochrome P450 1A1ProteinHumans
Unknown
Substrate
Details