Molecular properties and CYP2D6 substrates: central nervous system therapeutics case study and pattern analysis of a substrate database.

Article Details

Citation

Chico LK, Behanna HA, Hu W, Zhong G, Roy SM, Watterson DM

Molecular properties and CYP2D6 substrates: central nervous system therapeutics case study and pattern analysis of a substrate database.

Drug Metab Dispos. 2009 Nov;37(11):2204-11. doi: 10.1124/dmd.109.028134. Epub 2009 Aug 6.

PubMed ID
19661215 [ View in PubMed
]
Abstract

CYP2D6 substrate status is a critical Go/No Go decision criteria in central nervous system (CNS) drug discovery efforts because the polymorphic nature of CYP2D6 can lead to variable patient safety and drug efficacy. In addition, CYP2D6 is disproportionately involved in the metabolism of CNS drugs compared with other drug classes. Therefore, identifying trends in small molecule properties of CNS-penetrant compounds that can help discriminate potential CYP2D6 substrates from nonsubstrates would allow additional prioritization in the synthesis and biological evaluation of new therapeutic candidates. We report here the conversion of the CNS drug minaprine from substrate to nonsubstrate, as well as the conversion of the related CNS drug minozac from nonsubstrate to substrate, through the use of analog synthesis and CYP2D6 enzyme kinetic analyses. No single molecular property strongly correlated with substrate status for this 3-amino-4-methyl-6-phenylpyridazine scaffold, although molecular volume and charge appeared to be indirectly related. A parsed database of CYP2D6 substrates across diverse chemical structures was assembled and analyzed for physical property trends correlating with substrate status. We found that a complex interplay of properties influenced CYP2D6 substrate status and that the particular chemical scaffold affects which properties are most prominent. The results also identified an unexpected issue in CNS drug discovery, in that some property trends correlative with CYP2D6 substrates overlap previously reported properties that correlate with CNS penetrance. These results suggest the need for a careful balance in the design and synthesis of new CNS therapeutic candidates to avoid CYP2D6 substrate status while maintaining CNS penetrance.

DrugBank Data that Cites this Article

Drug Enzymes
DrugEnzymeKindOrganismPharmacological ActionActions
MinaprineCytochrome P450 2D6ProteinHumans
Unknown
Substrate
Details