In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios.

Article Details

Citation

Begas E, Kouvaras E, Tsakalof A, Papakosta S, Asprodini EK

In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios.

Biomed Chromatogr. 2007 Feb;21(2):190-200.

PubMed ID
17221922 [ View in PubMed
]
Abstract

A RP-HPLC method was developed for the assessment of caffeine and its metabolites in urine and was used for the evaluation of the CYP1A2, CYP2A6, xanthine oxidase (XO) and N-acetyl-transferase-2 (NAT-2) in vivo activities in 44 Greek volunteers (21 men, 23 women). Spot urine samples were analyzed 6 h after 200 mg caffeine consumption, following a 30 h methylxantine-free diet. The major urinary caffeine metabolites are 1-methyluric acid (1U), 5-acetylamino-6-formylamino-3-methyluracil (AFMU), 1-methylxanthine (1X), 1,7-dimethyluric acid (17U) and 1,7-dimethylxanthine (17X). CYP1A2, CYP2A6, XO and NAT-2 activities were estimated from the metabolic ratios (AFMU + 1U + 1X)/17U, 17U/17X, 1U/(1X + 1U) and AFMU/(AFMU + 1U + 1X), respectively. Metabolites and internal standard were extracted with chloroform/isopropanol (85:15, v/v) and separated on a C18 column by an isocratic HPLC system using a two-step elution with manual switch from solvent A (0.1% acetic acid-methanol-acetonitrile, 92:4:5 v/v) to solvent B (0.1% acetic acid-methanol, 60:40, v/v), and detected at 280 nm. The method exhibited adequate metabolite separation (resolution factors >1.48), accuracy (94.1-106.3%) and intraday and interday precision <8.02 and <8.78%, respectively (n = 6). Smoking affected only CYP1A2, whereas gender had no effect in any enzyme activity. NAT-2 exhibited bimodal distribution, 63.6% of volunteers being slow acetylators. The developed RP-HPLC method was fully validated and successfully applied for the evaluation of CYP1A2, CYP2A6, XO and NAT-2 activities.

DrugBank Data that Cites this Article

Drug Reactions
Reaction
Details
Details
Details
Details
Details
Details