Effects of terbutaline on force and intracellular calcium in slow-twitch skeletal muscle fibres of the rat.

Article Details

Citation

Ha TN, Posterino GS, Fryer MW

Effects of terbutaline on force and intracellular calcium in slow-twitch skeletal muscle fibres of the rat.

Br J Pharmacol. 1999 Apr;126(8):1717-24. doi: 10.1038/sj.bjp.0702482.

PubMed ID
10372813 [ View in PubMed
]
Abstract

1. The effect of the alpha2-adrenoceptor agonist, terbutaline, was investigated on simultaneously measured force and intracellular free calcium ([Ca2+]i) in intact rat soleus muscle fibres, and on contractile protein function and Ca2+ content of the sarcoplasmic reticulum (SR) in skinned fibres. 2. Terbutaline (10 microM) had no significant effect on either resting force or [Ca2+]i. Exposure to terbutaline increased both the integral of the indo-1 ratio transient and peak twitch force by 37%. 3. At sub-maximal (10 Hz) stimulation frequencies, terbutaline accelerated force relaxation but had highly variable effects on tetanic force amplitude. The corresponding indo-1 ratio transients were significantly larger, and faster to decay than the controls. 4. Terbutaline increased tetanic force at near maximal stimulation frequencies (50 Hz) by increasing tetanic [Ca2+]i. Force relaxation was accelerated at this frequency with no significant change in the indo-1 ratio transient decay rate. 5. All of terbutaline's effects on force and indo-1 ratio transients in intact fibres were completely blocked and reversed by ICI 118551 (1 microM). 6. Mechanically skinned fibres isolated from intact muscles pre-treated with terbutaline showed no significant changes in SR Ca2+ content, myofilament [Ca2+]i-sensitivity or maximum force generating capacity. 7. The results suggest that terbutaline primarily modulates force by altering the amplitude and decay rate of the [Ca2+]i transient via phosphorylation of both the ryanodine receptor (RR) and the SR pump regulatory protein, phospholamban (PLB). The high variability of responses of slow-twitch muscles to beta2-agonists probably reflects individual differences in basal phosphorylation levels of PLB relative to that of RR.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
TerbutalineBeta-2 adrenergic receptorProteinHumans
Yes
Agonist
Details