Potential L-Type Voltage-Operated Calcium Channel Blocking Effect of Drotaverine on Functional Models.

Article Details

Citation

Patai Z, Guttman A, Mikus EG

Potential L-Type Voltage-Operated Calcium Channel Blocking Effect of Drotaverine on Functional Models.

J Pharmacol Exp Ther. 2016 Dec;359(3):442-451. doi: 10.1124/jpet.116.237271. Epub 2016 Oct 13.

PubMed ID
27738091 [ View in PubMed
]
Abstract

Drotaverine is considered an inhibitor of cyclic-3',5'-nucleotide-phophodiesterase (PDE) enzymes; however, published receptor binding data also support the potential L-type voltage- operated calcium channel (L-VOCC) blocking effect of drotaverine. Hence, in this work, we focus on the potential L-VOCC blocking effect of drotaverine by using L-VOCC-associated functional in vitro models. Accordingly, drotaverine and reference agents were tested on KCl-induced guinea pig tracheal contraction. Drotaverine, like the L-VOCC blockers nifedipine or diltiazem, inhibited the KCl-induced inward Ca(2+)- induced contraction in a concentration- dependent fashion. The PDE inhibitor theophylline had no effect on the KCl-evoked contractions, indicating its lack of inhibition on inward Ca(2+) flow. Drotaverine was also tested on the L-VOCC-mediated resting Ca(2+) refill model. In this model, the extracellular Ca(2+) enters the cells to replenish the emptied intracellular Ca(2+) stores. Drotaverine and L-VOCC blocker reference molecules inhibited Ca(2+) replenishment of Ca(2+)-depleted preparations detected by agonist-induced contractions in post-Ca(2+) replenishment Ca(2+)-free medium. Theophylline did not modify the Ca(2+) store replenishment after contraction. It seems that drotaverine, but not theophylline, inhibits inward Ca(2+) flux. The addition of CaCl2 to Ca(2+)-free medium containing the agonist induced inward Ca(2+) flow and subsequent contraction of Ca(2+)-depleted tracheal preparations. Drotaverine, similar to the L-VOCC blockers, inhibited inward Ca(2+) flow and blunted the slope of CaCl2-induced contraction in agonist containing Ca(2+)-free medium with Ca(2+)-depleted tracheal preparations. These results show that drotaverine behaves like L-VOCC blockers but, unlike PDE inhibitors using L-VOCC associated in vitro experimental models.

DrugBank Data that Cites this Article

Drugs
Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
DrotaverineVoltage-dependent L-type calcium channel (Protein Group)Protein groupHumans
Unknown
Inhibitor
Details