Development of 2-substituted-N-(naphth-1-ylmethyl) and N-benzhydrylpyrimidin-4-amines as dual cholinesterase and Abeta-aggregation inhibitors: Synthesis and biological evaluation.

Article Details

Citation

Mohamed T, Yeung JC, Rao PP

Development of 2-substituted-N-(naphth-1-ylmethyl) and N-benzhydrylpyrimidin-4-amines as dual cholinesterase and Abeta-aggregation inhibitors: Synthesis and biological evaluation.

Bioorg Med Chem Lett. 2011 Oct 1;21(19):5881-7. doi: 10.1016/j.bmcl.2011.07.091. Epub 2011 Jul 30.

PubMed ID
21873056 [ View in PubMed
]
Abstract

A group of 2-substituted N-(naphth-1-ylmethyl)pyrimidin-4-amines (6a-k) and N-benzhydrylpyrimidin-4-amines (7a-k) in conjunction with varying steric and electronic properties at the C-2 position were designed, synthesized and evaluated as dual cholinesterase and amyloid-beta (Abeta)-aggregation inhibitors. The naphth-1-ylmethyl compound 6f (2-(4-cyclohexylpiperazin-1-yl)-N-(naphth-1-ylmethyl)pyrimidin-4-amine) exhibited optimum dual ChE (AChE IC(50)=8.0 muM, BuChE IC(50)=3.9 muM) and hAChE-promoted Abeta-aggregation inhibition (30.8% at 100 muM), whereas in the N-benzhydryl series, compound 7f (N-benzhydryl-2-(4-cyclohexylpiperazin-1-yl)pyrimidin-4-amine) exhibited optimum combination of dual ChE (AChE IC(50)=10.0 muM, BuChE IC(50)=7.6muM) and hAChE-promoted Abeta-aggregation inhibition (32% at 100 muM). These results demonstrate that a 2,4-disubstituted pyrimidine ring serves as a suitable template to target multiple pathological routes in AD, with a C-2 cyclohexylpiperazine substituent providing dual ChE inhibition and potency whereas a C-4 diphenylmethane substituent provides Abeta-aggregation inhibition.

DrugBank Data that Cites this Article

Binding Properties
DrugTargetPropertyMeasurementpHTemperature (°C)
TacrineAcetylcholinesteraseIC 50 (nM)77N/AN/ADetails