Agents combining thromboxane receptor antagonism with thromboxane synthase inhibition: [[[2-(1H-imidazol-1-yl)ethylidene]amino]oxy]alkanoic acids.

Article Details

Citation

Cozzi P, Giordani A, Menichincheri M, Pillan A, Pinciroli V, Rossi A, Tonani R, Volpi D, Tamburin M, Ferrario R, et al.

Agents combining thromboxane receptor antagonism with thromboxane synthase inhibition: [[[2-(1H-imidazol-1-yl)ethylidene]amino]oxy]alkanoic acids.

J Med Chem. 1994 Oct 14;37(21):3588-604.

PubMed ID
7932586 [ View in PubMed
]
Abstract

A new class of compounds combining thromboxane-A2 (TxA2) receptor antagonism and thromboxane synthase inhibition is described. A first series of (E)- and (Z)-[[[2-(1H-imidazol-1-yl)ethylidene]amino]oxy]pentanoic acids showed relevant thromboxane synthase inhibition associated with weak TxA2 receptor antagonism, while a series of (+/-)-(E)-[[[2-(1H-imidazol-1-yl)-3-phenylpropylidene]amino]oxy] pentanoic acids, structurally derived from the former, showed potent and well-balanced dual activity. Structural requirements for significant single and dual activity are discussed. Two close congeners of the latter series, (+/-)-(E)-5-[[[1-cyclohexyl-2-(1H-imidazol-1-yl)-3- phenylpropylidene]amino]oxy]pentanoic acid 23c and its p-fluorophenyl analog 23m, inhibited TxB2 production in vitro, in rat whole blood during clotting, with IC50 of 0.06 and 0.37 microM and antagonized the binding of [3H]SQ 29548 to washed human platelets, with IC50 of 0.08 and 0.02 microM, respectively. These two compounds were selected for further pharmacological evaluation and were shown to antagonize U46619-induced platelet aggregation in human platelet rich plasma with IC50 of 0.30 and 0.44 microM, respectively. They were both orally available, and in particular 23m caused a long lasting ex vivo TxA2 synthase inhibition in the fed rat. The levorotatory enantiomer of 23c, stereospecifically synthesized as a model compound, was found to be more potent than racemic 23c with regard to TxA2 receptor antagonism (IC50 = 0.04 microM) and equivalent to the latter with regard to TxA2 synthase inhibition. A molecular modeling study concerning the levorotatory enantiomer of 23c (S), TxA2, and representative TxA2 antagonists of different classes led to the definition of a putative pharmacophoric model for the TxA2 receptor ligands.

DrugBank Data that Cites this Article

Binding Properties
DrugTargetPropertyMeasurementpHTemperature (°C)
RidogrelThromboxane A2 receptorIC 50 (nM)2100N/AN/ADetails