Role of P-glycoprotein in accumulation and cytotoxicity of amrubicin and amrubicinol in MDR1 gene-transfected LLC-PK1 cells and human A549 lung adenocarcinoma cells.

Article Details

Citation

Hira A, Watanabe H, Maeda Y, Yokoo K, Sanematsu E, Fujii J, Sasaki J, Hamada A, Saito H

Role of P-glycoprotein in accumulation and cytotoxicity of amrubicin and amrubicinol in MDR1 gene-transfected LLC-PK1 cells and human A549 lung adenocarcinoma cells.

Biochem Pharmacol. 2008 Feb 15;75(4):973-80. doi: 10.1016/j.bcp.2007.10.023. Epub 2007 Oct 30.

PubMed ID
18054347 [ View in PubMed
]
Abstract

Amrubicin is a completely synthetic 9-aminoanthracycline agent for the treatment of lung cancer in Japan. The cytotoxicity of C-13 hydroxy metabolite, amrubicinol, is 10 to 100 times greater than that of amrubicin. The transporters responsible for the intracellular pharmacokinetics of amrubicin and amrubicinol remains unclear. This study was aimed to determine whether P-glycoprotein (P-gp) plays functional and preventive role in cellular accumulation and cytotoxicity of amrubicin and its active metabolite amrubicinol by in vitro transport and toxicity experiments. Cytotoxicity and intracellular accumulation of amrubicin and amrubicinol were evaluated by LLC-PK1 cells, MDR1 gene-transfected LLC-PK1 (L-MDR1) cells overexpressing P-gp, and human A549 lung adenocarcinoma cells. L-MDR1 cells showed 6- and 12-fold greater resistance to amrubicin and amrubicinol, respectively, than the parental LLC-PK1 cells. The intracellular accumulation of both drugs in L-MDR1 cells was significantly reduced compared to the LLC-PK1 cells. The basal-to-apical transepithelial transport of both drugs markedly exceeded, whereas the apical-to-basal transport of both drugs was significantly lower in L-MDR1 cells than LLC-PK1 cells. Cyclosporin A (CyA) restored the sensitivity, intracellular accumulation and transport activity for both drugs in L-MDR1 cells. In A549 cells, CyA significantly increased the intracellular accumulation and cytotoxicity of both drugs. These findings indicated that P-gp is responsible for cellular accumulation and cytotoxicity of both amrubicin and amrubicinol, therefore suggesting that the antitumor effect of amrubicin could be affected by the expression level of P-gp in lung cancer cells in chemotherapeutic treatments.

DrugBank Data that Cites this Article

Drugs
Drug Transporters
DrugTransporterKindOrganismPharmacological ActionActions
AmrubicinATP-binding cassette sub-family B member 5ProteinHumans
Unknown
Substrate
Details