Neurobiology of ammonia.

Article Details

Citation

Felipo V, Butterworth RF

Neurobiology of ammonia.

Prog Neurobiol. 2002 Jul;67(4):259-79.

PubMed ID
12207972 [ View in PubMed
]
Abstract

Hyperammonemia resulting from inherited urea cycle enzyme deficiencies or liver failure results in severe central nervous system dysfunction including brain edema, convulsions and coma. Neuropathologic evaluation in these disorders reveals characteristic alterations of astrocyte morphology ranging from cell swelling (acute hyperammonemia) to Alzheimer Type II astrocytosis (chronic hyperammonemia). Having no effective urea cycle, brain relies on glutamine synthesis for the removal of excess ammonia and the enzyme responsible, glutamine synthetase, has a predominantly astrocytic localization. Accumulation of ammonia in brain results in a redistribution of cerebral blood flow and metabolism from cortical to sub-cortical structures. In addition to changes in astrocyte morphology, increased brain ammonia concentrations result in alterations in expression of key astrocyte proteins including glial fibrillary acidic protein, glutamate and glycine transporters and "peripheral-type" (mitochondrial) benzodiazepine receptors. Such changes result in alterations of astrocytic volume and increased extracellular concentrations of excitatory and inhibitory substances. In addition, the ammonium ion has direct effects on excitatory-inhibitory transmission via distinct mechanisms involving cellular chloride extrusion and postsynaptic receptor function. Acute ammonia exposure leads to activation of NMDA receptors and their signal transduction pathways. Chronic hyperammonemia also results in increased concentrations of neuroactive L-tryptophan metabolites including serotonin and quinolinic acid. Therapy in hyperammonemic syndromes continues to rely on ammonia-lowering strategies via peripheral mechanisms (reduction of ammonia production in the gastrointestinal tract, increased ammonia removal by muscle).

DrugBank Data that Cites this Article

Drugs