Nonpeptide tachykinin receptor antagonists: I. Pharmacological and pharmacokinetic characterization of SB 223412, a novel, potent and selective neurokinin-3 receptor antagonist.

Article Details

Citation

Sarau HM, Griswold DE, Potts W, Foley JJ, Schmidt DB, Webb EF, Martin LD, Brawner ME, Elshourbagy NA, Medhurst AD, Giardina GA, Hay DW

Nonpeptide tachykinin receptor antagonists: I. Pharmacological and pharmacokinetic characterization of SB 223412, a novel, potent and selective neurokinin-3 receptor antagonist.

J Pharmacol Exp Ther. 1997 Jun;281(3):1303-11.

PubMed ID
9190866 [ View in PubMed
]
Abstract

The in vitro and in vivo pharmacological profile of SB 223412 [(S)-(-)-N-(alpha-ethylbenzyl)-3-hydroxy-2-phenylquinoline-4-carbo xamide], a novel human NK-3 (hNK-3) receptor antagonist, is described. SB 223412 demonstrated enantioselective affinity for inhibition of [125I][MePhe7]neurokinin B (NKB) binding to membranes of CHO cells expressing the hNK-3 receptor (CHO hNK-3). SB 223412, the (S)-isomer, (Ki = 1.0 nM), has similar affinity as the natural ligand, NKB (Ki = 0.8 nM) and another nonpeptide NK-3 receptor antagonist, SR 142801 (Ki = 1.2 nM). SB 223412 was selective for hNK-3 receptors compared with hNK-1 (>10,000-fold selective) and hNK-2 receptors (>140-fold selective), and selectivity was further demonstrated by its lack of effect, in concentrations up to 1 or 10 microM, in >60 receptor, enzyme and ion channel assays. SB 223412 enantioselectively inhibited the NKB-induced Ca++ mobilization in HEK 293 cells stably expressing the hNK-3 receptor. SB 223412 (10-1,000 nM) produced concentration-dependent rightward shifts in NKB-induced Ca++ mobilization concentration-response curves with a Kb value of 3 nM. In addition, SB 223412 antagonized senktide-induced contraction in the isolated rabbit iris sphincter muscle (Kb = 1.6 nM). In mice, oral administration of SB 223412 produced dose-dependent inhibition of behavioral responses induced by the NK-3 receptor-selective agonist, senktide (ED50 = 12.2 mg/kg). Pharmacokinetic evaluation of SB 223412 in rat and dog indicated low plasma clearance, oral bioavailability and high and sustained plasma concentrations after 4 to 8 mg/kg oral dosages. The preclinical profile of SB 223412 (high affinity, selectivity, reversibility and oral activity) suggests that it will be a useful tool compound to define the physiological and pathophysiological roles of NK-3 receptors.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
TalnetantNeuromedin-K receptorProteinHumans
Yes
Antagonist
Details