Altered intravenous pharmacokinetics of topotecan in rats with acute renal failure (ARF) induced by uranyl nitrate: do adenosine A1 antagonists (selective/non-selective) normalize the altered topotecan kinetics in ARF?

Article Details

Citation

Mustafa S, Venkatesh P, Pasha K, Mullangi R, Srinivas NR

Altered intravenous pharmacokinetics of topotecan in rats with acute renal failure (ARF) induced by uranyl nitrate: do adenosine A1 antagonists (selective/non-selective) normalize the altered topotecan kinetics in ARF?

Xenobiotica. 2006 Dec;36(12):1239-58.

PubMed ID
17162470 [ View in PubMed
]
Abstract

A series of exploratory investigations with multiple agents was carried out in normal rats and in rats with uranyl nitrate-induced acute renal failure to understand the disposition characteristics of intravenous topotecan (TPT) used as a model substrate. The disposition of TPT was unaltered in normal rats when treated with methotrexate, whereas treatment with probenecid increased the systemic exposure of TPT. In case of uranyl nitrate-induced acute renal failure (UN-ARF) rats, the systemic exposure of TPT was increased when compared with normal rats, whereas in UN-ARF rats treated with probenecid a further reduction in renal clearance of TPT was noted as compared with that of UN-ARF induced rats. Thus, TPT may be involved in the tubular secretory pathway when a passive glomerular filtration pathway for elimination was not possible. The disposition of TPT did not normalize in UN-ARF rats when treated with caffeine, a non-selective adenosine A1 receptor antagonist, whereas the selective adenosine A1 receptor antagonist (1,3-dipropyl-8-phenylxanthine, DPPX) normalized TPT pharmacokinetic disposition by improving renal function. Renal excretion studies demonstrated that CLR improved by almost fivefold following DPPX treatment in ARF rats. In addition, the qualitative stability/metabolism pattern of TPT in liver microsomes prepared from various groups of rats (normal rats, UN-ARF rats, rats treated with DPPX, and UN-ARF rats treated with DPPX) was found to be similar. In summary, using a pharmacokinetic tool as a surrogate, it has been shown that the pharmacokinetic disposition of TPT improved considerably upon treatment with DPPX, a selective adenosine A1 antagonist.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
CaffeineAdenosine receptor A1ProteinHumans
Yes
Antagonist
Details
TheobromineAdenosine receptor A1ProteinHumans
Yes
Antagonist
Details