Structure and expression of the human lysyl hydroxylase gene (PLOD): introns 9 and 16 contain Alu sequences at the sites of recombination in Ehlers-Danlos syndrome type VI patients.

Article Details

Citation

Heikkinen J, Hautala T, Kivirikko KI, Myllyla R

Structure and expression of the human lysyl hydroxylase gene (PLOD): introns 9 and 16 contain Alu sequences at the sites of recombination in Ehlers-Danlos syndrome type VI patients.

Genomics. 1994 Dec;24(3):464-71.

PubMed ID
7713497 [ View in PubMed
]
Abstract

Lysyl hydroxylase (EC 1.14.11.4) catalyzes the formation of hydroxylysine in collagens by the hydroxylation of lysine residues in peptide linkages. This enzyme activity is known to be reduced in patients with the type VI variant of the Ehlers-Danlos syndrome, and the first mutations in the lysyl hydroxylase gene (PLOD) have recently been identified. We have now isolated genomic clones for human lysyl hydroxylase and determined the complete structure of the gene, which contains 19 exons and a 5' flanking region with characteristics shared by housekeeping genes. The constitutive expression of the gene in different tissues further suggests that lysyl hydroxylase has an essential function. We have sequenced the introns of the gene in the region where many mutations and rearrangements analyzed to date are concentrated. Intron 9 and intron 16 show extensive homology resulting from the many Alu sequences found in these introns. Intron 9 contains five and intron 16 eight Alu sequences. The high homology and many short identical or complementary sequences in these introns generate many potential recombination sites with the gene. The delineation of the structure of the lysyl hydroxylase gene contributes significantly to our understanding of the rearrangements in the genome of Ehlers-Danlos type VI patients.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1Q02809Details