Second messengers in platelet aggregation evoked by serotonin and A23187, a calcium ionophore.

Article Details

Citation

Connor JD, Rasheed H, Gilani AH, Cheema M, Rizvi Z, Saeed SA

Second messengers in platelet aggregation evoked by serotonin and A23187, a calcium ionophore.

Life Sci. 2001 Oct 26;69(23):2759-64.

PubMed ID
11720080 [ View in PubMed
]
Abstract

We investigated the combined effect of 5-hydroxytryptamine (5-HT, serotonin) and calcium ionophore (A23187) on human platelet aggregation. Aggregation, monitored at 37 degrees C using a Dual-channel Lumi-aggregometer, was recorded for 5 min after challenge by a change in light transmission as a function of time. 5-HT (2-200 microM) alone did not cause platelet aggregation, but markedly potentiated A23187 (low dose) induced aggregation. Inhibitory concentration (IC50) values for a number of compounds were calculated as means +/- SEM from dose-response determinations. Synergism between 5-HT (2-5 microM) and A23187 (0.5-2 microM) was inhibited by 5-HT receptor blockers, methysergide (IC50 = 18 microM) and cyproheptadine (IC50 = 20 microM), and calcium channel blockers (verapamil and diltiazem, IC50 = 20 microM and 40 microM respectively). Interpretation of the effects of these blockers is complicated by their lack of specificity. Similarly, U73122, an inhibitor of phospholipase C (PLC), blocked the synergistic effect at an IC50 value of 9.2 microM. Wortmannin, a phosphatidylinositide 3-kinase (PI 3-K) inhibitor, also blocked the response (IC50 = 2.6 microM). However, neither genistein, a tyrosine-specific protein kinase inhibitor, nor chelerythrine, a protein kinase C inhibitor, affected aggregation at concentrations up to 10 microM. We conclude that the synergistic interaction between 5-HT and ionophore may be mediated by activation of PLC/Ca2+ and PI 3-kinase signalling pathways, but definitive proof will require other enzyme inhibitors with greater specificity.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
Methysergide5-hydroxytryptamine receptor 2AProteinHumans
Yes
Antagonist
Details