Estrogen mobilizes a subset of estrogen receptor-alpha-immunoreactive vesicles in inhibitory presynaptic boutons in hippocampal CA1.

Article Details

Citation

Hart SA, Snyder MA, Smejkalova T, Woolley CS

Estrogen mobilizes a subset of estrogen receptor-alpha-immunoreactive vesicles in inhibitory presynaptic boutons in hippocampal CA1.

J Neurosci. 2007 Feb 21;27(8):2102-11.

PubMed ID
17314305 [ View in PubMed
]
Abstract

Although the classical mechanism of estrogen action involves activation of nuclear transcription factor receptors, estrogen also has acute effects on neuronal signaling that occur too rapidly to involve gene expression. These rapid effects are likely to be mediated by extranuclear estrogen receptors associated with the plasma membrane and/or cytoplasmic organelles. Here we used a combination of serial-section electron microscopic immunocytochemistry, immunofluorescence, and Western blotting to show that estrogen receptor-alpha is associated with clusters of vesicles in perisomatic inhibitory boutons in hippocampal CA1 and that estrogen treatment mobilizes these vesicle clusters toward synapses. Estrogen receptor-alpha is present in approximately one-third of perisomatic inhibitory boutons, and specifically in those that express cholecystokinin, not parvalbumin. We also found a high degree of extranuclear estrogen receptor-alpha colocalization with neuropeptide Y. Our results suggest a novel mode of estrogen action in which a subset of vesicles within a specific population of inhibitory boutons responds directly to estrogen by moving toward synapses. The mobilization of these vesicles may influence acute effects of estrogen mediated by estrogen receptor-alpha signaling at inhibitory synapses.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
DiethylstilbestrolEstrogen receptor alphaProteinHumans
Yes
Agonist
Details