The molecular characterization and tissue distribution of the human cysteinyl leukotriene CysLT(2) receptor.

Article Details

Citation

Takasaki J, Kamohara M, Matsumoto M, Saito T, Sugimoto T, Ohishi T, Ishii H, Ota T, Nishikawa T, Kawai Y, Masuho Y, Isogai T, Suzuki Y, Sugano S, Furuichi K

The molecular characterization and tissue distribution of the human cysteinyl leukotriene CysLT(2) receptor.

Biochem Biophys Res Commun. 2000 Aug 2;274(2):316-22.

PubMed ID
10913337 [ View in PubMed
]
Abstract

Cysteinyl leukotrienes (CysLTs), slow-reacting substances of anaphylaxis, are lipid mediators known to possess potent proinflammatory action. Pharmacological studies using CysLTs indicate that at least two classes of G protein-coupled receptors (GPCRs), named CysLT(1) and CysLT(2), exist; the former is sensitive and the latter is resistant to the CysLT(1) antagonists currently used to treat asthma. Although the CysLT(1) receptor gene has been recently cloned, the molecular identity of the CysLT(2) receptor has remained elusive. Here we show that the pharmacological profile of an orphan GPCR (PSEC0146) is consistent with that of the CysLT(2) receptor. In human embryonic kidney 293 cells that express the PSEC0146 cDNA, leukotriene C(4) (LTC(4)) and leukotriene D(4) (LTD(4)) induce equal increases in intracellular calcium mobilization; these increases are not affected by CysLT(1) antagonists. Additionally, [(3)H]LTC(4) specifically binds to membranes from COS-1 cells transiently transfected with PSEC0146. Large amounts of the PSEC0146 mRNA are found in human heart, placenta, spleen, and peripheral blood leukocytes but not in the lung and the trachea. Pharmacological feature and expression studies will eventually lead to a better understanding of the classification of CysLT receptors, possibly leading to a reconsideration of the pathological and physiological role of CysLTs.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Cysteinyl leukotriene receptor 2Q9NS75Details