Functional characterization of the molecular defects causing nephrogenic diabetes insipidus in eight families.

Article Details

Citation

Pasel K, Schulz A, Timmermann K, Linnemann K, Hoeltzenbein M, Jaaskelainen J, Gruters A, Filler G, Schoneberg T

Functional characterization of the molecular defects causing nephrogenic diabetes insipidus in eight families.

J Clin Endocrinol Metab. 2000 Apr;85(4):1703-10.

PubMed ID
10770218 [ View in PubMed
]
Abstract

X-Linked nephrogenic diabetes insipidus (NDI) is a rare inherited disorder characterized by the excretion of abnormal large volumes of diluted urine mainly caused by mutations in the V2 vasopressin receptor (AVPR2) gene. By screening NDI patients for mutations within the AVPR2 gene we have identified three novel (I46K, F105V, I130F) and four recurrent (D85N, R106C, R113W, Q225X) mutations. In addition, a recurrent missense mutation (A147T) within the aquaporin-2 gene was identified in a female patient with autosomal recessive NDI associated with sensorineural deafness. Selected clinical data of the NDI patients were compared with the results from the in vitro studies. Functional analysis of I46K and I130F revealed reduced maximum agonist-induced cAMP responses as a result of an improper cell surface targeting. In contrast, the F105V mutation is delivered to the cell surface and displayed an unchanged maximum cAMP response, but impaired ligand binding abilities of F105V were reflected in a shifted concentration-response curve toward higher vasopressin concentrations. As the extracellularly located F105 is highly conserved among the vasopressin/oxytocin receptor family, functional analysis of this residue implicates an important role in high affinity agonist binding.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Vasopressin V2 receptorP30518Details