Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor.

Article Details

Citation

Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH

Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor.

J Biol Chem. 1994 Oct 28;269(43):26988-95.

PubMed ID
7929439 [ View in PubMed
]
Abstract

Vascular endothelial growth factor (VEGF) is a homodimeric peptide growth factor which binds to two structurally related tyrosine kinase receptors denoted Flt1 and KDR. In order to compare the signal transduction via these two receptors, the human Flt1 and KDR proteins were stably expressed in porcine aortic endothelial cells. Binding analyses using 125I-VEGF revealed Kd values of 16 pM for Flt1 and 760 pM for KDR. Cultured human umbilical vein endothelial (HUVE) cells were found to express two distinct populations of binding sites with affinities similar to those for Flt1 and KDR, respectively. The KDR expressing cells showed striking changes in cell morphology, actin reorganization and membrane ruffling, chemotaxis and mitogenicity upon VEGF stimulation, whereas Flt1 expressing cells lacked such responses. KDR was found to undergo ligand-induced autophosphorylation in intact cells, and both Flt1 and KDR were phosphorylated in vitro in response to VEGF, however, KDR much more efficiently than Flt1. Neither the receptor-associated activity of phosphatidylinositol 3'-kinase nor tyrosine phosphorylation of phospholipase C-gamma were affected by stimulation of Flt1 or KDR expressing cells, and phosphorylation of GTPase activating protein was only slightly increased. Members of the Src family such as Fyn and Yes showed an increased level of phosphorylation upon VEGF stimulation of cells expressing Flt1 but not in cells expressing KDR. The maximal responses in KDR expressing porcine aortic endothelial cells were obtained at higher VEGF concentrations as compared to HUVE cells, i.e. in the presence of Flt1. This difference could possibly be explained by the formation of heterodimeric complexes between KDR and Flt1, or other molecules, in HUVE cells.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Vascular endothelial growth factor receptor 2P35968Details