Two distinct mechanisms of inactivation of the class Ic ribonucleotide reductase from Chlamydia trachomatis by hydroxyurea: implications for the protein gating of intersubunit electron transfer.

Article Details

Citation

Jiang W, Xie J, Varano PT, Krebs C, Bollinger JM Jr

Two distinct mechanisms of inactivation of the class Ic ribonucleotide reductase from Chlamydia trachomatis by hydroxyurea: implications for the protein gating of intersubunit electron transfer.

Biochemistry. 2010 Jun 29;49(25):5340-9. doi: 10.1021/bi100037b.

PubMed ID
20462199 [ View in PubMed
]
Abstract

Catalysis by a class I ribonucleotide reductase (RNR) begins when a cysteine (C) residue in the alpha(2) subunit is oxidized to a thiyl radical (C(*)) by a cofactor approximately 35 A away in the beta(2) subunit. In a class Ia or Ib RNR, a stable tyrosyl radical (Y(*)) is the C oxidant, whereas a Mn(IV)/Fe(III) cluster serves this function in the class Ic enzyme from Chlamydia trachomatis (Ct). It is thought that, in either case, a chain of Y residues spanning the two subunits mediates C oxidation by forming transient "pathway" Y(*)s in a multistep electron transfer (ET) process that is "gated" by the protein so that it occurs only in the ready holoenzyme complex. The drug hydroxyurea (HU) inactivates both Ia/b and Ic beta(2) subunits by reducing their C oxidants. Reduction of the stable cofactor Y(*) (Y122(*)) in Escherichia coli class Ia beta(2) is faster in the presence of alpha(2) and a substrate (CDP), leading to speculation that HU might intercept a transient ET pathway Y(*) under these turnover conditions. Here we show that this mechanism is one of two that are operant in HU inactivation of the Ct enzyme. HU reacts with the Mn(IV)/Fe(III) cofactor to give two distinct products: the previously described homogeneous Mn(III)/Fe(III)-beta(2) complex, which forms only under turnover conditions (in the presence of alpha(2) and the substrate), and a distinct, diamagnetic Mn/Fe cluster, which forms approximately 900-fold less rapidly as a second phase in the reaction under turnover conditions and as the sole outcome in the reaction of Mn(IV)/Fe(III)-beta(2) only. Formation of Mn(III)/Fe(III)-beta(2) also requires (i) either Y338, the subunit-interfacial ET pathway residue of beta(2), or Y222, the surface residue that relays the "extra electron" to the Mn(IV)/Fe(IV) intermediate during activation of beta(2) but is not part of the catalytic ET pathway, and (ii) W51, the cofactor-proximal residue required for efficient ET between either Y222 or Y338 and the cofactor. The combined requirements for the catalytic subunit, the substrate, and, most importantly, a functional surface-to-cofactor electron relay system imply that HU effects the Mn(IV)/Fe(III) --> Mn(III)/Fe(III) reduction by intercepting a Y(*) that forms when the ready holoenzyme complex is assembled, the ET gate is opened, and the Mn(IV) oxidizes either Y222 or Y338.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
HydroxyureaRibonucleoside-diphosphate reductase large subunitProteinHumans
Yes
Inhibitor
Details