Two arginine-glutamate ionic locks near the extracellular surface of FFAR1 gate receptor activation.

Article Details

Citation

Sum CS, Tikhonova IG, Costanzi S, Gershengorn MC

Two arginine-glutamate ionic locks near the extracellular surface of FFAR1 gate receptor activation.

J Biol Chem. 2009 Feb 6;284(6):3529-36. doi: 10.1074/jbc.M806987200. Epub 2008 Dec 8.

PubMed ID
19068482 [ View in PubMed
]
Abstract

Activation of a number of class A G protein-coupled receptors (GPCRs) is thought to involve two molecular switches, a rotamer toggle switch within the transmembrane domain and an ionic lock at the cytoplasmic surface of the receptor; however, the mechanism by which agonist binding changes these molecular interactions is not understood. Importantly, 80% of GPCRs including free fatty acid receptor 1 (FFAR1) lack the complement of amino acid residues implicated in either or both of these two switches; the mechanism of activation of these GPCRs is therefore less clear. By homology modeling, we identified two Glu residues (Glu-145 and Glu-172) in the second extracellular loop of FFAR1 that form putative interactions individually with two transmembrane Arg residues (Arg-183(5.39) and Arg-258(7.35)) to create two ionic locks. Molecular dynamics simulations showed that binding of agonists to FFAR1 leads to breakage of these Glu-Arg interactions. In mutagenesis experiments, breakage of these two putative interactions by substituting Ala for Glu-145 and Glu-172 caused constitutive receptor activation. Our results therefore reveal a molecular switch for receptor activation present on the extracellular surface of FFAR1 that is broken by agonist binding. Similar ionic locks between the transmembrane domains and the extracellular loops may constitute a mechanism common to other class A GPCRs also.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Free fatty acid receptor 1O14842Details