Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress.

Article Details

Citation

Landriscina M, Bagala C, Mandinova A, Soldi R, Micucci I, Bellum S, Prudovsky I, Maciag T

Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress.

J Biol Chem. 2001 Jul 6;276(27):25549-57. Epub 2001 May 10.

PubMed ID
11432880 [ View in PubMed
]
Abstract

Fibroblast growth factor (FGF) 1 is known to be released in response to stress conditions as a component of a multiprotein aggregate containing the p40 extravescicular domain of p65 synaptotagmin (Syt) 1 and S100A13. Since FGF1 is a Cu2+-binding protein and Cu2+ is known to induce its dimerization, we evaluated the capacity of recombinant FGF1, p40 Syt1, and S100A13 to interact in a cell-free system and the role of Cu2+ in this interaction. We report that FGF1, p40 Syt1, and S100A13 are able to bind Cu2+ with similar affinity and to interact in the presence of Cu2+ to form a multiprotein aggregate which is resistant to low concentrations of SDS and sensitive to reducing conditions and ultracentrifugation. The formation of this aggregate in the presence of Cu2+ is dependent on the presence of S100A13 and is mediated by cysteine-independent interactions between S100A13 and either FGF1 or p40 Syt1. Interestingly, S100A13 is also able to interact in the presence of Cu2+ with Cys-free FGF1 and this observation may account for the ability of S100A13 to export Cys-free FGF1 in response to stress. Lastly, tetrathiomolybdate, a Cu2+ chelator, significantly represses in a dose-dependent manner the heat shock-induced release of FGF1 and S100A13. These data suggest that S100A13 may be involved in the assembly of the multiprotein aggregate required for the release of FGF1 and that Cu2+ oxidation may be an essential post-translational intracellular modifier of this process.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Fibroblast growth factor 1P05230Details