Remodeling of ryanodine receptor complex causes "leaky" channels: a molecular mechanism for decreased exercise capacity.

Article Details

Citation

Bellinger AM, Reiken S, Dura M, Murphy PW, Deng SX, Landry DW, Nieman D, Lehnart SE, Samaru M, LaCampagne A, Marks AR

Remodeling of ryanodine receptor complex causes "leaky" channels: a molecular mechanism for decreased exercise capacity.

Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2198-202. doi: 10.1073/pnas.0711074105. Epub 2008 Feb 11.

PubMed ID
18268335 [ View in PubMed
]
Abstract

During exercise, defects in calcium (Ca2+) release have been proposed to impair muscle function. Here, we show that during exercise in mice and humans, the major Ca2+ release channel required for excitation-contraction coupling (ECC) in skeletal muscle, the ryanodine receptor (RyR1), is progressively PKA-hyperphosphorylated, S-nitrosylated, and depleted of the phosphodiesterase PDE4D3 and the RyR1 stabilizing subunit calstabin1 (FKBP12), resulting in "leaky" channels that cause decreased exercise tolerance in mice. Mice with skeletal muscle-specific calstabin1 deletion or PDE4D deficiency exhibited significantly impaired exercise capacity. A small molecule (S107) that prevents depletion of calstabin1 from the RyR1 complex improved force generation and exercise capacity, reduced Ca2+-dependent neutral protease calpain activity and plasma creatine kinase levels. Taken together, these data suggest a possible mechanism by which Ca2+ leak via calstabin1-depleted RyR1 channels leads to defective Ca2+ signaling, muscle damage, and impaired exercise capacity.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Ryanodine receptor 1P21817Details