A novel mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor causes hereditary 1,25-dihydroxyvitamin D-resistant rickets.

Article Details

Citation

Lin NU, Malloy PJ, Sakati N, al-Ashwal A, Feldman D

A novel mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor causes hereditary 1,25-dihydroxyvitamin D-resistant rickets.

J Clin Endocrinol Metab. 1996 Jul;81(7):2564-9.

PubMed ID
8675579 [ View in PubMed
]
Abstract

Mutations in the vitamin D receptor (VDR) result in hereditary 1,25-dihydroxyvitamin D3-resistant rickets (HVDRR), an autosomal recessive disease caused by target organ resistance to the action of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. In this study, we investigated the molecular basis of HVDRR in a child from Saudi Arabia who was previously shown to be resistant to 1,25-(OH)2D3 action, but whose cultured skin fibroblasts exhibited normal [3H]1,25-(OH)2D3 binding. Using the PCR, exons 2 and 3 of the VDR gene that encode the DNA-binding region of the receptor were amplified and sequenced. A novel point mutation at nucleotide 252 in exon 2 of the VDR was identified. This missense mutation (GGC to GAC) resulted in the conversion of glycine to aspartic acid at amino acid position 46 (G46D), located at the base of the first zinc finger. This single base change was introduced into wild-type VDR complementary DNA by site-directed mutagenesis, and the mutant VDR was then expressed in COS-1 cells. The expressed mutant VDR displayed a normal binding affinity (Kd = 1.2 x 10(-10) mol/L) for [3H]1,25-(OH)2D3 as determined by Scatchard analysis. However, the mutant VDR was shown to have reduced binding affinity for DNA by DNA-cellulose chromatography. In COS-7 cells cotransfected with a vitamin D response element-chloramphenicol acetyltransferase reporter construct and the mutant VDR complementary DNA expression vector, the mutant VDR was unable to activate gene transcription in cells treated with up to 100 nmol/L 1,25-(OH)2D3. Restriction fragment length polymorphism analysis using MwoI restriction digests of exon 2 demonstrated that the affected child is homozygous for the mutation, whereas the child's father is heterozygous and a carrier of the defective allele. In conclusion, a new mutation was identified in exon 2 of the VDR gene. This mutation, which occurs in the first zinc finger of the DNA-binding domain of the receptor, blocks 1,25-(OH)2D3 action and leads to the syndrome of HVDRR.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Vitamin D3 receptorP11473Details