cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases.
Article Details
- CitationCopy to clipboard
Lindberg RA, Hunter T
cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases.
Mol Cell Biol. 1990 Dec;10(12):6316-24.
- PubMed ID
- 2174105 [ View in PubMed]
- Abstract
A human epithelial (HeLa) cDNA library was screened with degenerate oligonucleotides designed to hybridize to highly conserved regions of protein-tyrosine kinases. One cDNA from this screen was shown to contain a putative protein-tyrosine kinase catalytic domain and subsequently used to isolate another cDNA from a human keratinocyte library that encompasses the entire coding region of a 976-amino-acid polypeptide. The predicted protein has an external domain of 534 amino acids with a presumptive N-terminal signal peptide, a transmembrane domain, and a cytoplasmic domain of 418 amino acids that includes a canonical protein-tyrosine kinase catalytic domain. Molecular phylogeny indicates that this protein kinase is closely related to eph and elk and that this receptor family is more closely related to the non-receptor protein-tyrosine kinase families than to other receptor protein-tyrosine kinases. Antibodies raised against a TrpE fusion protein immunoprecipitated a 130-kDa protein that became phosphorylated on tyrosine in immune complex kinase assays, indicating that this protein is a bona fide protein-tyrosine kinase. Analysis of RNA from 13 adult rat organs showed that the eck gene is expressed most highly in tissues that contain a high proportion of epithelial cells, e.g., skin, intestine, lung, and ovary. Several cell lines of epithelial origin were found to express the eck protein kinase at the protein and RNA levels. Immunohistochemical analysis of several rat organs also showed staining in epithelial cells. These observations prompted us to name this protein kinase eck, for epithelial cell kinase.