Human and rabbit paraoxonases: purification, cloning, sequencing, mapping and role of polymorphism in organophosphate detoxification.

Article Details

Citation

Furlong CE, Costa LG, Hassett C, Richter RJ, Sundstrom JA, Adler DA, Disteche CM, Omiecinski CJ, Chapline C, Crabb JW, et al.

Human and rabbit paraoxonases: purification, cloning, sequencing, mapping and role of polymorphism in organophosphate detoxification.

Chem Biol Interact. 1993 Jun;87(1-3):35-48.

PubMed ID
8393745 [ View in PubMed
]
Abstract

Human and rabbit paraoxonases/arylesterases were purified to homogeneity by chromatographic and gel electrophoretic/isofocusing procedures coupled with activity stains. N-terminal and peptide sequence analysis suggested retention of the secretion signal sequence and allowed design of oligonucleotide probes. The probes were used to isolate a 1294-bp rabbit paraoxonase cDNA clone, which, in turn, was used to isolate three human cDNA clones. Comparison of rabbit and human protein and cDNA sequences indicated a high degree of sequence conservation (approximately 85% identity) and verified that paraoxonase retains its signal sequence (except for the N-terminal Met). The rabbit cDNA encodes a protein of 359 amino acids and the human a protein of 355 amino acids. In situ hybridization demonstrated, as expected, that the paraoxonase gene maps to the long arm of human chromosome 7. Arginine at position 192 specifies high activity paraoxonase and glutamine low activity human paraoxonase. Variation in protein levels explains the variation of enzyme activity observed within a genetic class. Toxicity studies showed that raising rat plasma paraoxonase levels by i.v. administration of partially purified rabbit paraoxonase protected animals against cholinesterase inhibition by paraoxon and chlorpyrifos oxon. Protection correlated with the relative rates of hydrolysis of these two compounds.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Serum paraoxonase/arylesterase 1P27169Details