Identification of a cytoplasmic-retention sequence in ERK2.

Article Details

Citation

Rubinfeld H, Hanoch T, Seger R

Identification of a cytoplasmic-retention sequence in ERK2.

J Biol Chem. 1999 Oct 22;274(43):30349-52.

PubMed ID
10521408 [ View in PubMed
]
Abstract

A key step in the signaling mechanism of the mitogen-activated protein kinase/extracellular signal-responsive kinase (ERK) cascade is its translocation into the nucleus where it regulates transcription and other nuclear processes. In an attempt to characterize the subcellular localization of ERK2, we fused it to the 3'-end of the gene expressing green fluorescent protein (GFP), resulting in a GFP-ERK2 protein. The expression of this construct in CHO cells resulted in a nuclear localization of the GFP-ERK2 protein. However, coexpression of the GFP-ERK2 with its upstream activator, MEK1, resulted in a cytosolic retention of the GFP-ERK2, which was the result of its association with MEK1, and was reversed upon stimulation. We then examined the role of the C-terminal region of ERK2 in its subcellular localization. Substitution of residues 312-319 of GFP-ERK2 to alanine residues prevented the cytosolic retention of ERK2 as well as its association with MEK1, without affecting its activity. Most important for the cytosolic retention are three acidic amino acids at positions 316, 319, and 320 of ERK2. Substitution of residues 321-327 to alanines impaired the nuclear translocation of ERK2 upon mitogenic stimulation. Thus, we conclude that residues 312-320 of ERK2 are responsible for its cytosolic retention, and residues 321-327 play a role in the mechanism of ERK2 nuclear translocation.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Mitogen-activated protein kinase 3P27361Details