Single nucleotide polymorphisms modify the transporter activity of ABCG2.

Article Details

Citation

Morisaki K, Robey RW, Ozvegy-Laczka C, Honjo Y, Polgar O, Steadman K, Sarkadi B, Bates SE

Single nucleotide polymorphisms modify the transporter activity of ABCG2.

Cancer Chemother Pharmacol. 2005 Aug;56(2):161-72. Epub 2005 Apr 19.

PubMed ID
15838659 [ View in PubMed
]
Abstract

Single nucleotide polymorphism (SNP) analyses of the ABCG2 gene have revealed three nonsynonymous SNPs resulting in the amino acid changes at V12M, Q141K and D620N. To determine whether the SNPs have an effect on drug transport, human embryonic kidney cells (HEK-293) were stably transfected with full length ABCG2 coding wild-type or SNP variants of ABCG2. In 4-day cytotoxicity assays with mitoxantrone, topotecan, SN-38 or diflomotecan, cells transfected with wild-type R482 ABCG2 showed IC50 values up to 1.2-fold to 5-fold higher than cells expressing comparable levels of Q141K ABCG2, suggesting that the Q141K SNP affects drug transport. FTC-inhibitable mitoxantrone efflux normalized to ABCG2 surface expression as assayed by the anti-ABCG2 antibody 5D3 was significantly lower in cells transfected with Q141K ABCG2 than in those transfected with wild-type R482 ABCG2 (P = 0.0048). Values for V12M and D620N ABCG2 were comparable to those for wild-type R482 ABCG2. The vanadate-sensitive ATPase activity of ABCG2 was assayed in Sf9 insect cells infected with wild-type or SNP variants of ABCG2. Basal ATPase activity in cells transfected with Q141K ABCG2 was 1.8-fold lower than in cells transfected with wild-type ABCG2, but was comparable among cells expressing wild-type, V12M or D620N ABCG2. Confocal studies of ABCG2 localization revealed higher intracellular staining in the Q141K transfectants than in cells transfected with wild-type or V12M ABCG2. Decreased transport of Hoechst 33342 was observed in Sf9 cells expressing V12M ABCG2; however, this was not true in HEK-293 cells expressing V12M ABCG2. These results suggest that the Q141K SNP affects the transport efficiency of ABCG2 and may result in altered pharmacokinetics or drug-resistance profiles in clinical oncology.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
ATP-binding cassette sub-family G member 2Q9UNQ0Details