Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes.

Article Details

Citation

Pullan ST, Chandra G, Bibb MJ, Merrick M

Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes.

BMC Genomics. 2011 Apr 4;12:175. doi: 10.1186/1471-2164-12-175.

PubMed ID
21463507 [ View in PubMed
]
Abstract

BACKGROUND: GlnR is an atypical response regulator found in actinomycetes that modulates the transcription of genes in response to changes in nitrogen availability. We applied a global in vivo approach to identify the GlnR regulon of Streptomyces venezuelae, which, unlike many actinomycetes, grows in a diffuse manner that is suitable for physiological studies. Conditions were defined that facilitated analysis of GlnR-dependent induction of gene expression in response to rapid nitrogen starvation. Microarray analysis identified global transcriptional differences between glnR+ and glnR mutant strains under varying nitrogen conditions. To differentiate between direct and indirect regulatory effects of GlnR, chromatin immuno-precipitation (ChIP) using antibodies specific to a FLAG-tagged GlnR protein, coupled with microarray analysis (ChIP-chip), was used to identify GlnR binding sites throughout the S. venezuelae genome. RESULTS: GlnR bound to its target sites in both transcriptionally active and apparently inactive forms. Thirty-six GlnR binding sites were identified by ChIP-chip analysis allowing derivation of a consensus GlnR-binding site for S. venezuelae. GlnR-binding regions were associated with genes involved in primary nitrogen metabolism, secondary metabolism, the synthesis of catabolic enzymes and a number of transport-related functions. CONCLUSIONS: The GlnR regulon of S. venezuelae is extensive and impacts on many facets of the organism's biology. GlnR can apparently bind to its target sites in both transcriptionally active and inactive forms.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Chloramphenicol 3-O phosphotransferaseQ56148Details