Substrate-induced conformational transition in human phenylalanine hydroxylase as studied by surface plasmon resonance analyses: the effect of terminal deletions, substrate analogues and phosphorylation.

Article Details

Citation

Stokka AJ, Flatmark T

Substrate-induced conformational transition in human phenylalanine hydroxylase as studied by surface plasmon resonance analyses: the effect of terminal deletions, substrate analogues and phosphorylation.

Biochem J. 2003 Feb 1;369(Pt 3):509-18.

PubMed ID
12379147 [ View in PubMed
]
Abstract

The optical biosensor technique, based on the surface plasmon resonance (SPR) phenomenon, was used for real-time measurements of the slow conformational transition (isomerization) which occurs in human phenylalanine hydroxylase (hPAH) on the binding/dissociation of L-phenylalanine (L-Phe). The binding to immobilized tetrameric wt-hPAH resulted in a time-dependent increase in the refractive index (up to approx. 3 min at 25 degrees C) with an end point of approx. 75 RU (resonance units)/(pmol subunit/mm(2)). By contrast, the contribution of binding the substrate (165 Da) to its catalytic core enzyme [DeltaN(1-102)/DeltaC(428-452)-hPAH] was only approx. 2 RU/(pmol subunit/mm(2)). The binding isotherm for tetrameric and dimeric wt-hPAH revealed a [S](0.5)-value of 98+/-7 microM (h =1.0) and 158+/-11 microM, respectively, i.e. for the tetramer it is slightly lower than the value (145+/-5 microM) obtained for the co-operative binding (h =1.6+/-0.4) of L-Phe as measured by the change in intrinsic tryptophan fluorescence. The responses obtained by SPR and intrinsic tryptophan fluorescence are both considered to be related to the slow reversible conformational transition which occurs in the enzyme upon L-Phe binding, i.e. by the transition from a low-activity state ('T-state') to a relaxed high-activity state ('R-state') characteristic of this hysteretic enzyme, however, the two methods reflect different elements of the transition. Studies on the N- and C-terminal truncated forms revealed that the N-terminal regulatory domain (residues 1-117) plus catalytic domain (residues 118-411) were required for the full signal amplitude of the SPR response. Both the on- and off-rates for the conformational transition were biphasic, which is interpreted in terms of a difference in the energy barrier and the rate by which the two domains (catalytic and regulatory) undergo a conformational change. The substrate analogue 3-(2-thienyl)-L-alanine revealed an SPR response comparable with that of L-Phe on binding to wild-type hPAH.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
PhenylalaninePhenylalanine-4-hydroxylaseProteinHumans
Unknown
Not AvailableDetails