Glyceraldehyde-3-phosphate dehydrogenase A

Details

Name
Glyceraldehyde-3-phosphate dehydrogenase A
Synonyms
  • 1.2.1.12
  • GAPDH-A
  • NAD-dependent glyceraldehyde-3-phosphate dehydrogenase
Gene Name
gapA
Organism
Escherichia coli (strain K12)
Amino acid sequence
>lcl|BSEQ0011489|Glyceraldehyde-3-phosphate dehydrogenase A
MTIKVGINGFGRIGRIVFRAAQKRSDIEIVAINDLLDADYMAYMLKYDSTHGRFDGTVEV
KDGHLIVNGKKIRVTAERDPANLKWDEVGVDVVAEATGLFLTDETARKHITAGAKKVVMT
GPSKDNTPMFVKGANFDKYAGQDIVSNASCTTNCLAPLAKVINDNFGIIEGLMTTVHATT
ATQKTVDGPSHKDWRGGRGASQNIIPSSTGAAKAVGKVLPELNGKLTGMAFRVPTPNVSV
VDLTVRLEKAATYEQIKAAVKAAAEGEMKGVLGYTEDDVVSTDFNGEVCTSVFDAKAGIA
LNDNFVKLVSWYDNETGYSNKVLDLIAHISK
Number of residues
331
Molecular Weight
35532.24
Theoretical pI
7.13
GO Classification
Functions
glyceraldehyde-3-phosphate dehydrogenase (NAD+) (phosphorylating) activity / NAD binding / NADP binding
Processes
glucose metabolic process / glycolytic process
Components
cytosol / membrane
General Function
Nadp binding
Specific Function
Catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG.
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Cytoplasm
Gene sequence
>lcl|BSEQ0011490|Glyceraldehyde-3-phosphate dehydrogenase A (gapA)
ATGACTATCAAAGTAGGTATCAACGGTTTTGGCCGTATCGGTCGCATTGTTTTCCGTGCT
GCTCAGAAACGTTCTGACATCGAGATCGTTGCAATCAACGACCTGTTAGACGCTGATTAC
ATGGCATACATGCTGAAATATGACTCCACTCACGGCCGTTTCGACGGTACCGTTGAAGTG
AAAGACGGTCATCTGATCGTTAACGGTAAAAAAATCCGTGTTACCGCTGAACGTGATCCG
GCTAACCTGAAATGGGACGAAGTTGGTGTTGACGTTGTCGCTGAAGCAACTGGTCTGTTC
CTGACTGACGAAACTGCTCGTAAACACATCACCGCTGGTGCGAAGAAAGTGGTTATGACT
GGTCCGTCTAAAGACAACACTCCGATGTTCGTTAAAGGCGCTAACTTCGACAAATATGCT
GGCCAGGACATCGTTTCCAACGCTTCCTGCACCACCAACTGCCTGGCTCCGCTGGCTAAA
GTTATCAACGATAACTTCGGCATCATCGAAGGTCTGATGACCACCGTTCACGCTACTACC
GCTACTCAGAAAACCGTTGATGGCCCGTCTCACAAAGACTGGCGCGGCGGCCGCGGCGCT
TCCCAGAACATCATCCCGTCCTCTACCGGTGCTGCTAAAGCTGTAGGTAAAGTACTGCCA
GAACTGAATGGCAAACTGACTGGTATGGCGTTCCGCGTTCCGACCCCGAACGTATCTGTA
GTTGACCTGACCGTTCGTCTGGAAAAAGCTGCAACTTACGAGCAGATCAAAGCTGCCGTT
AAAGCTGCTGCTGAAGGCGAAATGAAAGGCGTTCTGGGCTACACCGAAGATGACGTAGTA
TCTACCGATTTCAACGGCGAAGTTTGCACTTCCGTGTTCGATGCTAAAGCTGGTATCGCT
CTGAACGACAACTTCGTGAAACTGGTATCCTGGTACGACAACGAAACCGGTTACTCCAAC
AAAGTTCTGGACCTGATCGCTCACATCTCCAAATAA
Chromosome Location
Not Available
Locus
Not Available
External Identifiers
ResourceLink
UniProtKB IDP0A9B2
UniProtKB Entry NameG3P1_ECOLI
GenBank Gene IDX02662
General References
  1. Branlant G, Branlant C: Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1985 Jul 1;150(1):61-6. [Article]
  2. Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. [Article]
  3. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. [Article]
  4. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. Epub 2006 Feb 21. [Article]
  5. Link AJ, Robison K, Church GM: Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis. 1997 Aug;18(8):1259-313. [Article]
  6. Nelson K, Whittam TS, Selander RK: Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6667-71. [Article]
  7. Guttman DS, Dykhuizen DE: Detecting selective sweeps in naturally occurring Escherichia coli. Genetics. 1994 Dec;138(4):993-1003. [Article]
  8. Doolittle RF, Feng DF, Anderson KL, Alberro MR: A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote. J Mol Evol. 1990 Nov;31(5):383-8. [Article]
  9. Soukri A, Mougin A, Corbier C, Wonacott A, Branlant C, Branlant G: Role of the histidine 176 residue in glyceraldehyde-3-phosphate dehydrogenase as probed by site-directed mutagenesis. Biochemistry. 1989 Mar 21;28(6):2586-92. [Article]
  10. VanBogelen RA, Abshire KZ, Moldover B, Olson ER, Neidhardt FC: Escherichia coli proteome analysis using the gene-protein database. Electrophoresis. 1997 Aug;18(8):1243-51. [Article]
  11. Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y: Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics. 2009 Feb;8(2):215-25. doi: 10.1074/mcp.M800187-MCP200. Epub 2008 Aug 23. [Article]
  12. Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BM, Tishkoff D, Ho L, Lombard D, He TC, Dai J, Verdin E, Ye Y, Zhao Y: The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics. 2011 Dec;10(12):M111.012658. doi: 10.1074/mcp.M111.012658. Epub 2011 Sep 9. [Article]
  13. Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y: Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol. 2011 Jan;7(1):58-63. doi: 10.1038/nchembio.495. Epub 2010 Dec 12. [Article]
  14. Duee E, Olivier-Deyris L, Fanchon E, Corbier C, Branlant G, Dideberg O: Comparison of the structures of wild-type and a N313T mutant of Escherichia coli glyceraldehyde 3-phosphate dehydrogenases: implication for NAD binding and cooperativity. J Mol Biol. 1996 Apr 12;257(4):814-38. [Article]
  15. Yun M, Park CG, Kim JY, Park HW: Structural analysis of glyceraldehyde 3-phosphate dehydrogenase from Escherichia coli: direct evidence of substrate binding and cofactor-induced conformational changes. Biochemistry. 2000 Sep 5;39(35):10702-10. [Article]
  16. Frayne J, Taylor A, Cameron G, Hadfield AT: Structure of insoluble rat sperm glyceraldehyde-3-phosphate dehydrogenase (GAPDH) via heterotetramer formation with Escherichia coli GAPDH reveals target for contraceptive design. J Biol Chem. 2009 Aug 21;284(34):22703-12. doi: 10.1074/jbc.M109.004648. Epub 2009 Jun 19. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB02263D-glyceraldehyde 3-phosphateexperimentalunknownDetails
DB038142-(N-morpholino)ethanesulfonic acidexperimentalunknownDetails