50S ribosomal protein L4

Details

Name
50S ribosomal protein L4
Synonyms
  • eryA
  • Large ribosomal subunit protein uL4
Gene Name
rplD
Organism
Escherichia coli (strain K12)
Amino acid sequence
>lcl|BSEQ0019455|50S ribosomal protein L4
MELVLKDAQSALTVSETTFGRDFNEALVHQVVVAYAAGARQGTRAQKTRAEVTGSGKKPW
RQKGTGRARSGSIKSPIWRSGGVTFAARPQDHSQKVNKKMYRGALKSILSELVRQDRLIV
VEKFSVEAPKTKLLAQKLKDMALEDVLIITGELDENLFLAARNLHKVDVRDATGIDPVSL
IAFDKVVMTADAVKQVEEMLA
Number of residues
201
Molecular Weight
22086.36
Theoretical pI
10.45
GO Classification
Functions
bacterial-type RNA polymerase transcriptional repressor activity, sequence-specific DNA binding / endoribonuclease inhibitor activity / RNA binding / rRNA binding / structural constituent of ribosome / translation repressor activity
Processes
DNA-templated transcription, termination / negative regulation of endoribonuclease activity / negative regulation of transcription, DNA-templated / negative regulation of translation / response to antibiotic / ribosome assembly / translation
Components
cytosol / cytosolic large ribosomal subunit / large ribosomal subunit / polysomal ribosome / protein-DNA complex
General Function
One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA (PubMed:3298242). It is important during the early stages of 50S assembly (PubMed:3298242). It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (PubMed:7556101, PubMed:6170935).
Specific Function
Bacterial-type rna polymerase transcriptional repressor activity, sequence-specific dna binding
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Not Available
Gene sequence
>lcl|BSEQ0019456|50S ribosomal protein L4 (rplD)
ATGGAATTAGTATTGAAAGACGCGCAGAGCGCGCTGACTGTTTCCGAAACTACCTTCGGT
CGTGATTTCAACGAAGCGCTGGTTCACCAGGTTGTTGTTGCTTATGCAGCTGGTGCTCGT
CAGGGTACTCGTGCTCAGAAGACTCGTGCTGAAGTAACTGGTTCCGGTAAAAAACCGTGG
CGCCAGAAAGGCACCGGCCGTGCGCGTTCTGGTTCTATCAAGAGCCCGATCTGGCGTTCT
GGTGGCGTGACCTTTGCTGCTCGTCCGCAGGACCACAGTCAAAAAGTTAACAAGAAGATG
TACCGCGGCGCGCTGAAAAGCATCCTGTCCGAACTGGTACGTCAGGATCGTCTGATCGTT
GTCGAGAAGTTCTCTGTAGAAGCGCCGAAAACTAAGCTGCTGGCACAGAAACTGAAAGAC
ATGGCTCTGGAAGATGTGCTGATCATCACCGGTGAGCTGGACGAAAACCTGTTCCTGGCT
GCGCGCAACCTGCACAAGGTTGACGTACGCGATGCAACTGGTATCGACCCGGTTAGCCTG
ATCGCCTTCGACAAAGTCGTAATGACTGCTGATGCTGTTAAGCAAGTTGAGGAGATGCTG
GCATGA
Chromosome Location
Not Available
Locus
Not Available
External Identifiers
ResourceLink
UniProtKB IDP60723
UniProtKB Entry NameRL4_ECOLI
GenBank Protein ID42826
GenBank Gene IDX02613
General References
  1. Zurawski G, Zurawski SM: Structure of the Escherichia coli S10 ribosomal protein operon. Nucleic Acids Res. 1985 Jun 25;13(12):4521-6. [Article]
  2. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. [Article]
  3. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. Epub 2006 Feb 21. [Article]
  4. Link AJ, Robison K, Church GM: Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis. 1997 Aug;18(8):1259-313. [Article]
  5. Urlaub H, Kruft V, Bischof O, Muller EC, Wittmann-Liebold B: Protein-rRNA binding features and their structural and functional implications in ribosomes as determined by cross-linking studies. EMBO J. 1995 Sep 15;14(18):4578-88. [Article]
  6. Wower I, Wower J, Meinke M, Brimacombe R: The use of 2-iminothiolane as an RNA-protein cross-linking agent in Escherichia coli ribosomes, and the localisation on 23S RNA of sites cross-linked to proteins L4, L6, L21, L23, L27 and L29. Nucleic Acids Res. 1981 Sep 11;9(17):4285-302. [Article]
  7. VanBogelen RA, Abshire KZ, Moldover B, Olson ER, Neidhardt FC: Escherichia coli proteome analysis using the gene-protein database. Electrophoresis. 1997 Aug;18(8):1243-51. [Article]
  8. Ban N, Beckmann R, Cate JH, Dinman JD, Dragon F, Ellis SR, Lafontaine DL, Lindahl L, Liljas A, Lipton JM, McAlear MA, Moore PB, Noller HF, Ortega J, Panse VG, Ramakrishnan V, Spahn CM, Steitz TA, Tchorzewski M, Tollervey D, Warren AJ, Williamson JR, Wilson D, Yonath A, Yusupov M: A new system for naming ribosomal proteins. Curr Opin Struct Biol. 2014 Feb;24:165-9. doi: 10.1016/j.sbi.2014.01.002. Epub 2014 Feb 10. [Article]
  9. Wittmann HG, Stoffler G, Apirion D, Rosen L, Tanaka K, Tamaki M, Takata R, Dekio S, Otaka E: Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol Gen Genet. 1973 Dec 20;127(2):175-89. [Article]
  10. Herold M, Nierhaus KH: Incorporation of six additional proteins to complete the assembly map of the 50 S subunit from Escherichia coli ribosomes. J Biol Chem. 1987 Jun 25;262(18):8826-33. [Article]
  11. Freedman LP, Zengel JM, Archer RH, Lindahl L: Autogenous control of the S10 ribosomal protein operon of Escherichia coli: genetic dissection of transcriptional and posttranscriptional regulation. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6516-20. [Article]
  12. Zengel JM, Lindahl L: Escherichia coli ribosomal protein L4 stimulates transcription termination at a specific site in the leader of the S10 operon independent of L4-mediated inhibition of translation. J Mol Biol. 1990 May 5;213(1):67-78. [Article]
  13. Zengel JM, Lindahl L: Ribosomal protein L4 stimulates in vitro termination of transcription at a NusA-dependent terminator in the S10 operon leader. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2675-9. [Article]
  14. Chittum HS, Champney WS: Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J Bacteriol. 1994 Oct;176(20):6192-8. [Article]
  15. Chittum HS, Champney WS: Erythromycin inhibits the assembly of the large ribosomal subunit in growing Escherichia coli cells. Curr Microbiol. 1995 May;30(5):273-9. [Article]
  16. Li X, Lindahl L, Zengel JM: Ribosomal protein L4 from Escherichia coli utilizes nonidentical determinants for its structural and regulatory functions. RNA. 1996 Jan;2(1):24-37. [Article]
  17. Allen T, Shen P, Samsel L, Liu R, Lindahl L, Zengel JM: Phylogenetic analysis of L4-mediated autogenous control of the S10 ribosomal protein operon. J Bacteriol. 1999 Oct;181(19):6124-32. [Article]
  18. Zengel JM, Jerauld A, Walker A, Wahl MC, Lindahl L: The extended loops of ribosomal proteins L4 and L22 are not required for ribosome assembly or L4-mediated autogenous control. RNA. 2003 Oct;9(10):1188-97. [Article]
  19. Arnold RJ, Reilly JP: Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal Biochem. 1999 Apr 10;269(1):105-12. [Article]
  20. Gao H, Sengupta J, Valle M, Korostelev A, Eswar N, Stagg SM, Van Roey P, Agrawal RK, Harvey SC, Sali A, Chapman MS, Frank J: Study of the structural dynamics of the E coli 70S ribosome using real-space refinement. Cell. 2003 Jun 13;113(6):789-801. [Article]
  21. Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC, Dahlberg AE, Frank J: The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell. 2001 Jul;8(1):181-8. [Article]
  22. Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH: Structures of the bacterial ribosome at 3.5 A resolution. Science. 2005 Nov 4;310(5749):827-34. [Article]
  23. Bischoff L, Berninghausen O, Beckmann R: Molecular basis for the ribosome functioning as an L-tryptophan sensor. Cell Rep. 2014 Oct 23;9(2):469-75. doi: 10.1016/j.celrep.2014.09.011. Epub 2014 Oct 9. [Article]
  24. Feng B, Mandava CS, Guo Q, Wang J, Cao W, Li N, Zhang Y, Zhang Y, Wang Z, Wu J, Sanyal S, Lei J, Gao N: Structural and functional insights into the mode of action of a universally conserved Obg GTPase. PLoS Biol. 2014 May 20;12(5):e1001866. doi: 10.1371/journal.pbio.1001866. eCollection 2014 May. [Article]
  25. Ma C, Kurita D, Li N, Chen Y, Himeno H, Gao N: Mechanistic insights into the alternative translation termination by ArfA and RF2. Nature. 2017 Jan 26;541(7638):550-553. doi: 10.1038/nature20822. Epub 2016 Dec 1. [Article]
  26. Huter P, Muller C, Beckert B, Arenz S, Berninghausen O, Beckmann R, Wilson DN: Structural basis for ArfA-RF2-mediated translation termination on mRNAs lacking stop codons. Nature. 2017 Jan 26;541(7638):546-549. doi: 10.1038/nature20821. Epub 2016 Dec 1. [Article]
  27. James NR, Brown A, Gordiyenko Y, Ramakrishnan V: Translational termination without a stop codon. Science. 2016 Dec 16;354(6318):1437-1440. Epub 2016 Dec 1. [Article]
  28. Zeng F, Chen Y, Remis J, Shekhar M, Phillips JC, Tajkhorshid E, Jin H: Structural basis of co-translational quality control by ArfA and RF2 bound to ribosome. Nature. 2017 Jan 26;541(7638):554-557. doi: 10.1038/nature21053. Epub 2017 Jan 11. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB13179TroleandomycinapprovedyesinhibitorDetails